
Chapter Two: Differentiation 

 

2.1 The Derivative and the Tangent Line Problem 

The difference quotient is introduced in pre-calculus as a rate of change. This will be the basis of the 

definition of derivatives. 

 

Definition of Tangent Line with Slope m – If f is defined on an open interval containing c, and if the limit 
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exists, then the line passing through (c, f(c)) with slope m is the tangent line to the graph of f at the point 

(c, f(c)). 

 

The slope of the tangent line is also called the slope of the graph. 

 

Examples: Find the slope of the tangent line to the graph of the function at the given point. 
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Definition of the Derivative of a Function – The derivative of f at x is given by 
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provided the limits exists. For all x for which this limit exists, f’ is a function of x. 

 

Notation – The following are equivalent:       ' , , ', , x
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Examples: Find the derivative by the limit process. 
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Examples: Find an equation of the tangent line to the graph of f at the given point. 
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 2.    1, 5,2f x x   

 

 

 

 

 

 

 

 

 3.    
1
, 0,1
1

f x
x




 

 

 

 

 



Example: Find an equation of the line that is tangent to   3 2f x x   and is parallel to 3 4 0x y   . 

 

 

 

 

 

 

 

 

 

 

 

 

Alternative Definition of the Derivative – The derivative of f at c is  
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provided this limit exists. Notice that this quotient is just the formula for the slope of a line between two 

points and the limit is what makes it work for nonlinear functions.  

 

Examples: Use the alternative form of the derivative to find the derivative at x = c, if it exists. 
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