
4.3 Riemann Sums and Definite Integrals 

In 4.2 we focused on rectangles that all had the same width. But that isn’t always the best way to go 

about breaking up an area, and many times it isn’t even possible. In order to overcome this we need a 

definition that could allow the widths to be different sizes. For any selected partitioning of an interval 

we will call it ∆. 

 

Definition of Riemann Sum – Let f be defined on the closed interval [a,b], and let ∆ be a partition of [a,b] 

given by 0 1 2 1... n na x x x x x b       where ix is the width of the ith subinterval. If ic is any 

point in the ith subinterval 1[ , ]i ix x , then the sum   1
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of f of the partition ∆. 

 

Fact: The width of the largest subinterval of a partition ∆ is the norm of the partition and is denoted by

 . If every subinterval is of equal width, the partition is the regular and the norm is denoted by 
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Definition of Definite Integral – If f is defined on the closed interval [a, b] and the limit of Riemann sums 

over partitions ∆ given by  0
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 exists, then f is said to be integrable on [a, b] and the 
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   . The limit is called the definite integral of f from 

a to b. The number a is the lower limit of integration, and the number b is the upper limit of integration. 

 

Theorem 4.4: Continuity Implies Integrability – If a function f is continuous on the closed interval [a, b], 

then f is integrable on [a, b]. That is,  
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Using the limit definition of a definite integral would have you consider changing your major to 

something that never uses math ever again. First you have to find a partition, then rewrite the integral 

as the limit of a sum, find the sum, take the limit, and finally you have an answer. There must be a better 

way! There is. 



Theorem 4.5: The Definite Integral as the Area of a Region – If f is continuous and nonnegative on the 

closed interval [a, b], then the area of the region bounded by the graph of f, the x-axis, and the vertical 

lines x = a and x = b is given by  
b
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Area f x dx  . 

 

Examples: Sketch the region corresponding to each definite integral. Then evaluate using a geometric 

formula. 
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Properties of Definite Integrals – 

 1. If f is defined at x = a, then we define   0
a

a
f x dx  . 

 2. If f is integrable on [a, b], then we define    
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3. If f is integrable on the three closed intervals determined by a, b, and c, then 
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Theorem 4.7: Properties of Definite Integrals – If f and g are integrable on [a, b] and k is a constant, then 

the functions kf and f g are integrable on [a, b], and  
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Examples: Evaluate the integral using the following values. 
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