Finding Limits Graphically and Numerically

By Tuesday J. Johnson

Suggested Review Topics

- Algebra skills reviews suggested:
 - Evaluating functions
 - Graphing functions
 - Working with inequalities
 - Working with absolute values
 - Conjugates and difference of squares
- Trigonometric skills reviews suggested:
 None

Calculus Limits and Their Properties

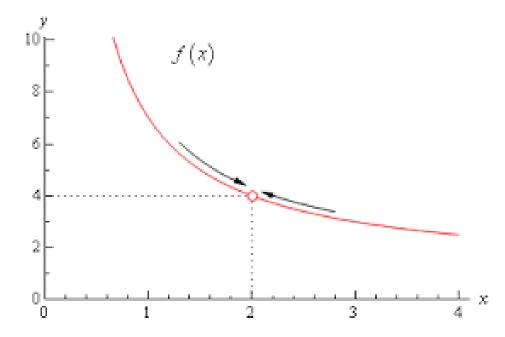
Finding Limits Graphically and Numerically

Limits

- Graphing functions seems pretty straightforward for functions that have a domain of all real numbers. We choose a few domain points, find the corresponding range values, then plot and join with a smooth curve.
- When the domain has exclusions we need to determine what is going on at or near these values. In order to do this we use what is called a limit.

Informal Definition

 If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the limit of f(x) as x approaches c is L.



Informal Definition

 If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the limit of f(x) as x approaches c is L.

• The limit is written as

 $\lim_{x \to c} f(x) = L$

1.
$$\lim_{x \to 2} \frac{x-2}{x^2-4}$$

2.
$$\lim_{x \to -5} \frac{\sqrt{4-x}-3}{x+5}$$

3.
$$\lim_{x \to 4} \frac{\frac{x}{x+1} - \frac{4}{5}}{x-4}$$

$$4. \lim_{x \to 0} \frac{\sin 4x}{x}$$

1.
$$\lim_{x \to 2} \frac{x-2}{x^2-4}$$

We will choose values close to 2 from both less than 2 (below 2) and greater than 2 (above 2).

x	1.9	1.99	1.999	2
$\frac{(x-2)}{(x^2-4)}$???
(x^2-4)				
x	2.1	2.01	2.001	2
$\frac{(x-2)}{(x^2-4)}$???
$\overline{(x^2-4)}$				

1.
$$\lim_{x \to 2} \frac{x-2}{x^2-4}$$

Replace x with each value to fill in the table for values below 2.

x	1.9	1.99	1.999	2
$\frac{(x-2)}{(x^2-4)}$	0.2564	0.2506	0.2501	???

1.
$$\lim_{x \to 2} \frac{x-2}{x^2-4}$$

Replace x with each value to fill in the table as well for values above 2.

x	1.9	1.99	1.999	2
$\frac{(x-2)}{(x^2-4)}$	0.2564	0.2506	0.2501	???
x	2.1	2.01	2.001	2
$\frac{(x-2)}{(x^2-4)}$	0.2439	0.2494	0.2499	???

1.
$$\lim_{x \to 2} \frac{x-2}{x^2-4} = \frac{1}{4} = 0.25$$

Now make an educated guess for the limit.

x	1.9	1.99	1.999	2
$\frac{x-2}{x^2-4}$	0.2564	0.2506	0.2501	0.25
x	2.1	2.01	2.001	2
$\frac{x-2}{x^2-4}$	0.2439	0.2494	0.2499	0.25

2.
$$\lim_{x \to -5} \frac{\sqrt{4-x}-3}{x+5}$$

Replace x with values both above and below -5.

x	-5.1	-5.01	-5.001	-5
$\left(\sqrt{(4-x)}-3\right)$	-0.1662	-0.1666	-0.1667	???
(x+5)				
x	-4.9	-4.99	-4.999	-5
$\sqrt{(4-x)} - 3)$	-0.1671	-0.1667	-0.1667	???
(x+5)				

2.
$$\lim_{x \to -5} \frac{\sqrt{4-x}-3}{x+5}$$

Make an educated guess as to the limit.

x	-5.1	-5.01	-5.001	-5
$\frac{(\sqrt{(4-x)}-3)}{(x+5)}$	-0.1662	-0.1666	-0.1667	-0.166
x	-4.9	-4.99	-4.999	-5
$\boxed{\frac{(\sqrt{(4-x)}-3)}{(x+5)}}$	-0.1671	-0.1667	-0.1667	-0.166

$$2. \lim_{x \to -5} \frac{\sqrt{4-x}-3}{x+5} = -\frac{1}{6}$$

x	-5.1	-5.01	-5.001	-5
$\left \left(\sqrt{(4-x)} - 3 \right) \right $	-0.1662	-0.1666	-0.1667	-0.166
(x+5)				
x	-4.9	-4.99	-4.999	-5
$(\sqrt{(4-x)}-3)$	-0.1671	-0.1667	-0.1667	-0.166
(x+5)				

 It looks like f(x) approaches -0.16666 ... but we will ALWAYS use exact values unless specified otherwise.

3.
$$\lim_{x \to 4} \frac{\frac{x}{x+1} - \frac{4}{5}}{x-4}$$

x	3.9	3.99	3.999	4
$\frac{\left(\frac{x}{(x+1)} - \frac{4}{5}\right)}{(x-4)}$	0.0408	0.0401	0.0400	???
x	4.1	4.01	4.001	4
$\frac{(\frac{x}{(x+1)} - \frac{4}{5})}{(x-4)}$	0.0392	0.0399	0.0400	???

3.
$$\lim_{x \to 4} \frac{\frac{x}{x+1} - \frac{4}{5}}{x-4} = 0.04 = \frac{1}{25}$$

x	3.9	3.99	3.999	4
$\frac{\left(\frac{x}{(x+1)} - \frac{4}{5}\right)}{(x-4)}$	0.0408	0.0401	0.0400	0.04
x	4.1	4.01	4.001	4
$\boxed{\frac{(\frac{x}{(x+1)} - \frac{4}{5})}{(x-4)}}$	0.0392	0.0399	0.0400	0.04

4.
$$\lim_{x \to 0} \frac{\sin 4x}{x} = 4$$

 ALWAYS use radians in Calculus! Take your calculator off degree mode now and keep it there. Unless a specific problem states otherwise.

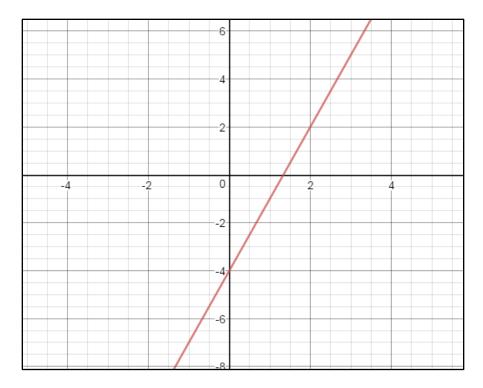
-0.1	-0.01	-0.001	0
3.8942	3.9989	4.0000	4
0.1	0.01	0.001	0
3.8942	3.9989	4.0000	4
	3.8942 0.1	3.8942 3.9989 0.1 0.01	3.8942 3.9989 4.0000 0.1 0.01 0.001

1.
$$\lim_{x \to 2} (3x - 4)$$

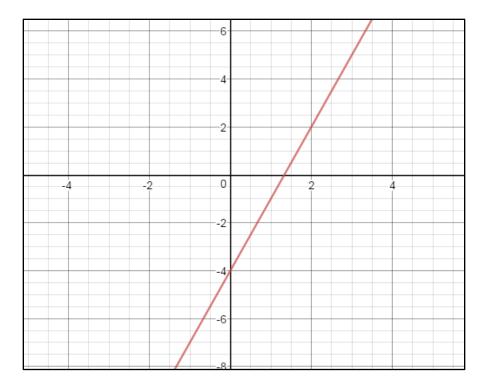
2.
$$\lim_{x \to -2} \frac{|x+2|}{x+2}$$

3. $\lim_{x \to 1} \frac{5}{x-1}$

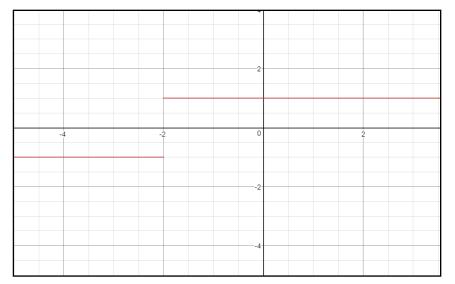
1.
$$\lim_{x \to 2} (3x - 4)$$



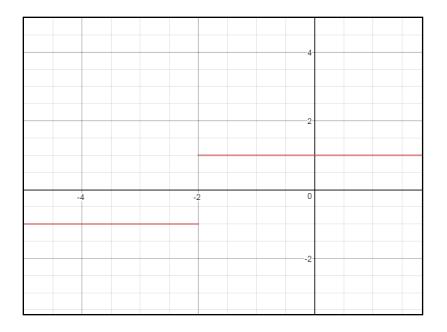
1.
$$\lim_{x \to 2} (3x - 4) = 2$$



- 2. $\lim_{x \to -2} \frac{|x+2|}{x+2}$
 - Notice that the numerator and denominator are the same for values larger than -2 and only have opposite value for x values smaller than -2.

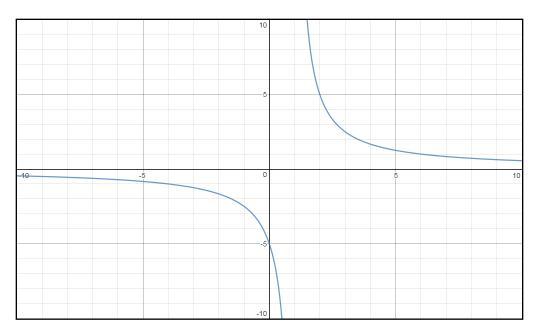


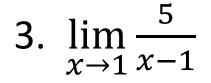
2. $\lim_{x \to -2} \frac{|x+2|}{x+2}$

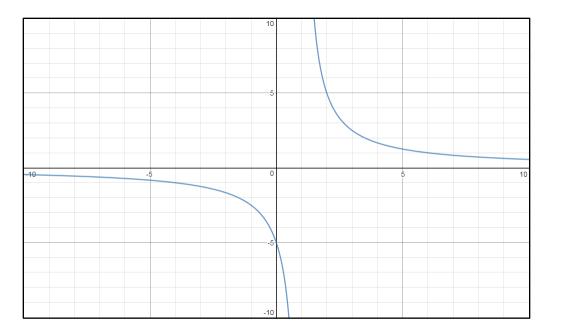


As $x \rightarrow -2$ from the right, the output is 1. However, as we approach from the left the function value goes to -1. These values do not match so the limit does not exist (DNE).

- 2. $\lim_{x \to 1} \frac{5}{x-1}$
 - Remembering translations from Pre-Calculus, we can graph this:







As $x \rightarrow 1$, the graph seems to "blow up" to both positive and negative infinity. This also means that the limit does not exist (DNE).

Common Types of Behavior Associated with Nonexistence of a Limit

- The function approaches a different number from the right side than it approaches from the left side.
- 2. The function increases (or decreases) without bound as x approaches c. That is, the function goes to infinity.
- The function oscillates between two fixed values. This frequently occurs with trigonometric functions.

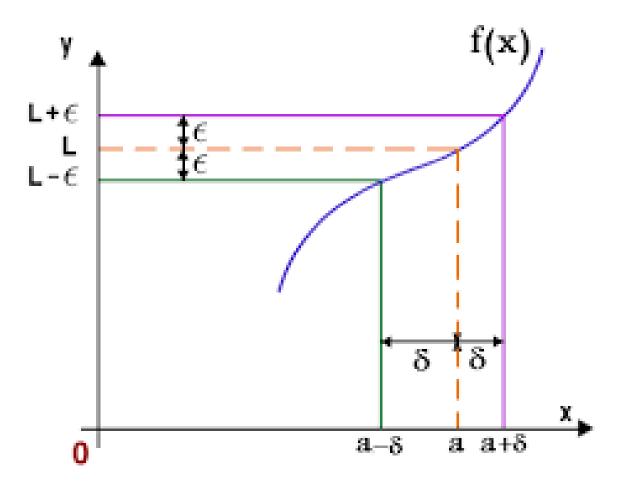
Formal Limit Definition

Let *f* be a function defined on an open interval containing *c* (except possibly at *c* itself) and let *L* be a real number. The statement

 $\lim_{x \to c} f(x) = L \text{ means that for each } \varepsilon > 0 \text{ there}$ exists a $\delta > 0$ such that if $0 < |x - c| < \delta$ then $|f(x) - L| < \varepsilon$

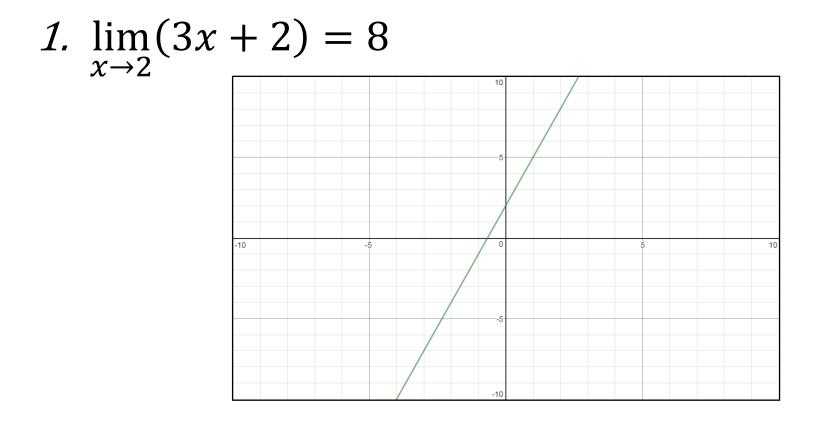
• This is known as the $\varepsilon - \delta$ definition of a limit.

The $\varepsilon - \delta$ definition of a limit graphically.



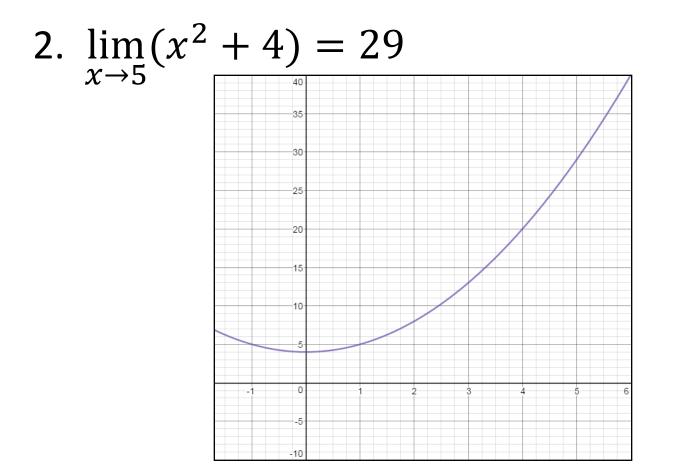
1.
$$\lim_{x \to 2} (3x + 2)$$

2.
$$\lim_{x \to 5} (x^2 + 4)$$



1.
$$\lim_{x \to 2} (3x + 2) = 8$$

Start with |f(x) - L| < 0.01 and make your substitutions to get |3x + 2 - 8| < 0.01 or |3x - 6| < 0.01. We can factor to get 3|x - 2| < 0.01 and finally divide to get $|x - 2| < \frac{0.01}{3}$. That is, let $\delta = \frac{0.01}{3}$.



2.
$$\lim_{x \to 5} (x^2 + 4) = 29$$

Goal: We want to get to $|x - 5| < \delta$ while starting with |f(x) - 29| < 0.01 |f(x) - L| < 0.01 $|x^{2} + 4 - 29| < 0.01$ $|x^{2} - 25| < 0.01$ |x - 5||x + 5| < 0.01

2.
$$\lim_{x \to 5} (x^2 + 4) = 29$$

|x - 5||x + 5| < 0.01

Our goal is to isolate |x - 5|. We can divide by |x + 5| as long as it is not zero. Near x = 5, this is not zero and it is at most 11. {Why 11? Near 5 is 6, and 6 + 5 = 11.

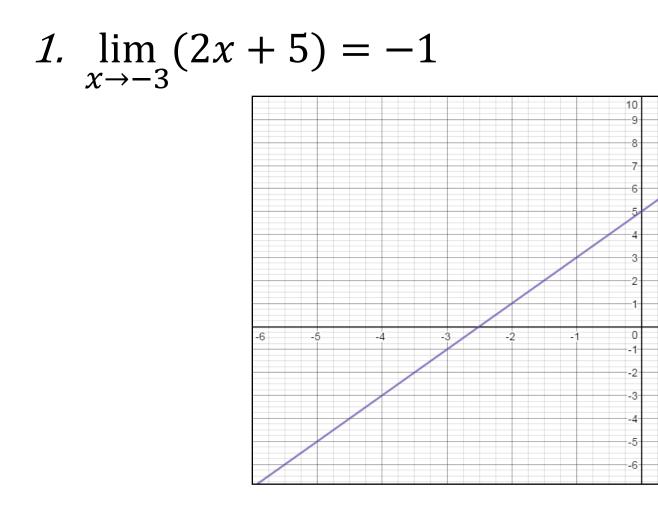
$$|x-5| < \frac{0.01}{|x+5|}$$
$$|x-5| < \frac{0.01}{11}$$

Therefore $\delta = {}^{0.01}/_{11}$ works.

1.
$$\lim_{x \to -3} (2x + 5)$$

2. $\lim_{x \to 4} \sqrt{x}$

3. $\lim_{x \to 6} |x - 6|$

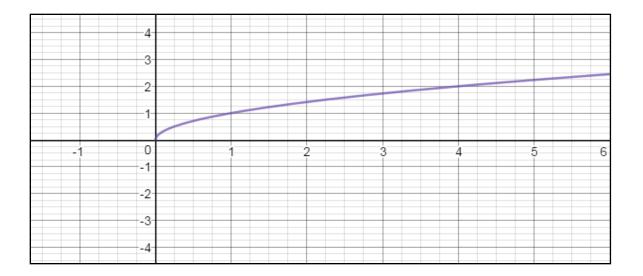


1.
$$\lim_{x \to -3} (2x + 5) = -1$$

Keep your goal in mind: Transform $|f(x) - (-1)| < \varepsilon$
to $|x - (-3)| < \delta$.
$$|f(x) - (-1)| < \varepsilon$$
$$|2x + 5 - (-1)| < \varepsilon$$
$$|2x + 6| < \varepsilon$$
$$|2x + 3| < \varepsilon$$
$$|x + 3| < \frac{\varepsilon}{2}$$

We can get f(x) as close to -1 as we want (ε), as long as x is within $\delta = \frac{\varepsilon}{2}$ of -3.

2.
$$\lim_{x \to 4} \sqrt{x} = 2$$



2.
$$\lim_{x \to 4} \sqrt{x} = 2$$
$$|f(x) - L| < \varepsilon$$
$$|\sqrt{x} - 2| < \varepsilon$$

Multiply by the conjugate on both sides...

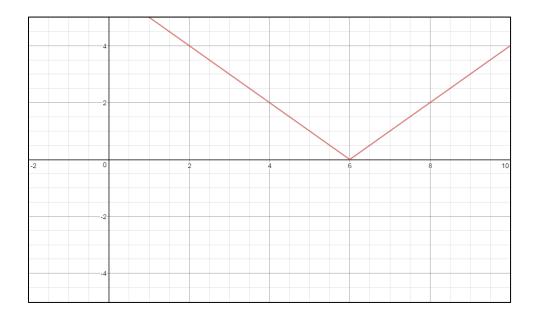
$$\begin{aligned} \left|\sqrt{x} + 2\right| \left|\sqrt{x} - 2\right| < \varepsilon \left|\sqrt{x} + 2\right| \\ \left|x - 4\right| < \varepsilon \left|\sqrt{x} + 2\right| \end{aligned}$$

Now to handle the right side of the inequality...

2.
$$\lim_{x \to 4} \sqrt{x} = 2$$
$$|x - 4| < \varepsilon |\sqrt{x} + 2|$$
Near 4, $|\sqrt{x} + 2|$ is close to $|\sqrt{4} + 2| = 4$, so we can finish this off with
$$|x - 4| < \varepsilon(4)$$

That is, let $\delta = 4\varepsilon$

3.
$$\lim_{x \to 6} |x - 6| = 0$$



$$|f(x) - L| < \varepsilon$$
$$||x - 6| - 0| < \varepsilon$$
$$|x - 6| < \varepsilon$$
So let $\delta = \varepsilon$.

The End

• Thank you to Desmos.com and their free online graphing utility for the graphs.