Increasing and Decreasing Functions and the First Derivative Test

By Tuesday J. Johnson

Suggested Review Topics

- Algebra skills reviews suggested:
 - None
- Trigonometric skills reviews suggested:
 - None

Applications of Differentiation

Increasing and Decreasing Functions and the First Derivative Test

Note

- There is a video that accompanies this section on my website and on YouTube. The link is: <u>https://www.youtube.com/watch?v=nUNAGTRiy64</u>
- In this video I talk specifically about Increasing and Decreasing Functions and give several examples.

Definitions of Increasing and Decreasing Functions

- A function f is increasing on an interval if for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) < f(x_2)$.
- A function f is decreasing on an interval if for any two numbers x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) > f(x_2)$.

Theorem 3.5 (Catchy title isn't it?)

- Let f be a function that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b).
 - 1. If f'(x) > 0 for all x in (a, b), then f is increasing on [a, b].
 - 2. If f'(x) < 0 for all x in (a, b), then f is decreasing on [a, b].
 - 3. If f'(x) = 0 for all x in (a, b), then f is constant on [a, b].

Guidelines for Finding Intervals of Increase and Decrease

- Let *f* be continuous on the interval (*a*, *b*). To find the OPEN intervals on which *f* is increasing or decreasing, use the following steps.
 - 1. Locate the critical number of f in (a, b), and use these numbers to determine test intervals.
 - 2. Determine the sign of f'(x) at one test value in each of the intervals.
 - 3. Use Theorem 3.5 to determine whether *f* is increasing or decreasing on each interval.

1. $h(x) = 27x - x^3$ Derivative: $h'(x) = 27 - 3x^2$ Solve: $0 = 27 - 3x^2$ becomes $3x^2 = 27$ so $x^2 = 9$ and $x = \pm 3$. Critical numbers: x = -3, 3

Test Points: x = -4,0,4

1.
$$h(x) = 27x - x^3$$

Derivative: $h'(x) = 27 - 3x^2$

Evaluate derivative at test points from each interval: $h'(-4) = 27 - 3(-4)^2 = 27 - 3(16) = Negative$ $h'(0) = 27 - 3(0)^2 = 27 = Positive$ $h'(4) = 27 - 3(4)^2 = 27 - 3(16) = Negative$

1.
$$h(x) = 27x - x^3$$

Conclusion:

Increasing on (-3,3)

Decreasing on $(-\infty, -3) \cup (3, \infty)$

2.
$$y = x + \frac{4}{x}$$

Derivative: $y' = 1 - \frac{4}{x^2}$
Critical number: $x = 0$ as derivative is undefined.
Solve: $0 = 1 - \frac{4}{x^2}$ becomes $\frac{4}{x^2} = 1$ so $x^2 = 4$ and $x = \pm 2$.

Critical numbers are x = -2, 0, 2 making four intervals on our number line.

$$y'(1) = 1 - \frac{4}{1} = y'(3) = 1 - \frac{4}{9} = +$$

2.
$$y = x + \frac{4}{x} - 3$$
 -1 1 3
 $\leftarrow + + 2 - 0 - 2 +$

Increasing on $(-\infty, -2) \cup (2, \infty)$ Decreasing on $(-2,0) \cup (0,2)$

We must exclude x = 0 in this way as the function is not defined there.

The First Derivative Test

- Let c be a critical number of a function f that is continuous on an open interval / containing c. If f is differentiable on the interval, except possibly at c, then f(c) can be classified as follows.
 - 1. If f'(x) changes from negative to positive at c, then f has a relative minimum at (c, f(c)).
 - 2. If f'(x) changes from positive to negative at c, then f has a relative maximum at (c, f(c)).
 - 3. If f'(c) is positive on both sides of c or negative on both sides of c, then f(c) is neither a relative minimum nor a relative maximum.

1. $f(x) = x^2 + 6x + 10$ Critical numbers: f'(x) = 0 or f'(x) DNE f'(x) = 2x + 6 0 = 2x + 6-3 = x

Test points might be, say, x = -4 and x = 0

Use test points in the derivative f'(x) = 2x + 6

$$f'(-4) = 2(-4) + 6 = negative$$

 $f'(0) = 2(0) + 6 = positive$

Conclusion:

Increasing: $(-3, \infty)$ Decreasing: $(-\infty, -3)$

1.
$$f(x) = x^2 + 6x + 10$$

- a) Critical numbers: x = -3
- b) Increasing: $(-3, \infty)$ Decreasing: $(\infty, -3)$
- c) Changes decreasing to increasing at x = -3 so this is the location of a minimum. The y value comes from the original function, so the minimum is the point (-3, f(-3)) = (-3, 1)

1.
$$f(x) = x^2 + 6x + 10$$

2.
$$f(x) = x^3 - 6x^2 + 15$$

Derivative:

$$f'(x) = 3x^2 - 12x$$

Derivative is zero or undefined:

Use test points in the derivative $f'(x) = 3x^2 - 12x = 3x(x - 4)$

$$f'(-1) = 3(-1)(-1 - 4) = + - - - = +$$

$$f'(1) = 3(1)(1 - 4) = + - - - - -$$

$$f'(5) = 3(5)(5 - 4) = + + - = +$$

Conclusion:

Increasing on $(-\infty, 0) \cup (4, \infty)$ Decreasing on(0,4)

- 2. $f(x) = x^3 6x^2 + 15$
- a) Critical Numbers: x = 0.4
- b) Increasing: $(-\infty, 0) \cup (4, \infty)$ Decreasing: (0,4)
- c) Changes increasing to decreasing at x = 0 so this is a maximum point: (0, f(0)) = (0, 15)Changes decreasing to increasing at x = 4 so this is a minimum point: (4, f(4)) = (4, -17)

20 -4 -2 0 6 8 10 à. -10 -20

2. $f(x) = x^3 - 6x^2 + 15$

3.
$$f(x) = x^4 - 32x + 4$$

 $f'(x) = 4x^3 - 32$
 $0 = 4x^3 - 32$
 $8 = x^3$

Critical Number: x = 2

Using test points in the derivative $f'(x) = 4x^3 - 32$

$$f'(0) = -32 = negative$$

 $f'(3) = 4(3)^3 - 32 = positive$

Conclusion:

Increasing: $(2, \infty)$ Decreasing: $(-\infty, 2)$

3. $f(x) = x^4 - 32x + 4$

Critical numbers: x = 2Increasing: $(2, \infty)$ Decreasing: $(-\infty, 2)$ Local minimum at x = 2 so the point (2, f(2)) = (2, -44)

The derivative tells us where to look, the original function tells us what it is.

4.
$$f(x) = (x - 3)^{1/3}$$

Derivative:

$$f'(x) = \frac{1}{3}(x-3)^{-\frac{2}{3}}(1)$$
$$f'(x) = \frac{1}{3\sqrt[3]{(x-3)^2}}$$

The derivative is never 0 as the numerator is never 0 but the derivative does not exist at x = 3.

Number line with derivative $f'(x) = \frac{1}{3\sqrt[3]{(x-3)^2}}$ $f'(0) = \frac{1}{3\sqrt[3]{(0-3)^2}} = positive$ $f'(5) = \frac{1}{3\sqrt[3]{(5-3)^2}} = positive$

Conclusion:

Increasing: $(-\infty, 3) \cup (3, \infty)$ Decreasing: never

4.
$$f(x) = (x - 3)^{1/3}$$

Critical number of x = 3

Increasing on $(-\infty, 3) \cup (3, \infty)$ and never decreasing.

Since the derivative never changes sign, there is no local minimum or maximum.

4.
$$f(x) = (x-3)^{1/3}$$

$$5. f(x) = \frac{x}{x+3}$$

Derivative:

$$f'(x) = \frac{(x+3)(1) - x(1)}{(x+3)^2} = \frac{3}{(x+3)^2}$$

Critical Number: x = -3

Test points in the derivative $f'(x) = \frac{3}{(x+3)^2}$

Increasing:
$$(-\infty, -3) \cup (-3, \infty)$$

5.
$$f(x) = \frac{x}{x+3}$$

 $f'(x) = \frac{(x+3)(1) - x(1)}{(x+3)^2} = \frac{3}{(x+3)^2}$

Critical Number: x = -3Increasing: $(-\infty, -3) \cup (-3, \infty)$ No sign change in derivative so no extrema

$$5. f(x) = \frac{x}{x+3}$$

6.
$$f(x) = \frac{x^2 - 3x - 4}{x - 2}$$

Derivative:

$$f'(x) = \frac{(x-2)(2x-3) - (x^2 - 3x - 4)(1)}{(x-2)^2}$$
$$f'(x) = \frac{2x^2 - 3x - 4x + 6 - x^2 + 3x + 4}{(x-2)^2}$$
$$f'(x) = \frac{x^2 - 4x + 10}{(x-2)^2}$$

For $f'(x) = \frac{x^2 - 4x + 10}{(x-2)^2}$, the only critical number is x = 2, where the denominator is zero. The numerator is never zero.

Test to the left of 2: $f'(0) = \frac{10}{positive} = pos$ Test to the right of 2: $f'(3) = \frac{7}{positive} = pos$

Conclusion:

Increasing: $(-\infty, 2) \cup (2, \infty)$

6.
$$f(x) = \frac{x^2 - 3x - 4}{x - 2}$$

Critical Numbers: x = 2Increasing: $(-\infty, 2) \cup (2, \infty)$

No change in sign of the derivative so no extrema.

6.
$$f(x) = \frac{x^2 - 3x - 4}{x - 2}$$

7.
$$f(x) = \sin x \cos x + 5$$
 on $(0, 2\pi)$

Derivative:

$$f'(x) = \sin x \left(-\sin x\right) + \cos x \left(\cos x\right)$$
$$f'(x) = \cos^2 x - \sin^2 x$$

Critical Numbers:

$$0 = \cos^2 x - \sin^2 x$$
$$\sin^2 x = \cos^2 x$$

Which occurs at $\frac{\pi}{4}$ in all four quadrants.

7. $f(x) = \sin x \cos x + 5$ on $(0, 2\pi)$

Critical Numbers:
$$x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

Increasing: $\left(0, \frac{\pi}{4}\right) \cup \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right) \cup \left(\frac{7\pi}{4}, 2\pi\right)$ Intervals only involving x's
Decreasing: $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \cup \left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$
Maximums at: $\left(\frac{\pi}{4}, \frac{11}{2}\right)$ and $\left(\frac{5\pi}{4}, \frac{11}{2}\right)$ Points of the form (x,y)

7. $f(x) = \sin x \cos x + 5$ on $(0,2\pi)$

Coughing forces the trachea (windpipe) to contract, which affects the velocity v of the air passing through the trachea. The velocity of the air during coughing is $v = k(R - r)r^2$ for $0 \le r < R$, where k is a constant, R is the normal radius of the trachea, and ris the radius during coughing. What radius will produce maximum air velocity?

- Find r when v' = 0 $\frac{dv}{dr} = k[(R - r)2r + r^{2}(-1)]$ $= k[2Rr - 2r^{2} - r^{2}]$ $= k[2Rr - 3r^{2}]$
- The derivative is zero when 0 = r(2R 3r) or when r = 0 and $r = \frac{2R}{r}$

- The critical number of r = 0 will not produce maximum air flow as the radius of the trachea at zero will produce NO air flow. This is a bad situation!
- The critical number $r = \frac{2R}{3}$ is a radius that is 2/3 the normal radius of your trachea in order to provide maximum velocity of a cough.

• Good luck doing that on purpose!!!

End of Lecture