Concavity and the Second Derivative Test

By Tuesday J. Johnson

Suggested Review Topics

- Algebra skills reviews suggested:
 - None
- Trigonometric skills reviews suggested:
 - None

Applications of Differentiation

Concavity and the Second Derivative Test

Definition of Concavity

- Let f be differentiable on an open interval I. The graph of f is concave upward on I if f' is increasing on the interval and concave downward on I if f' is decreasing on the interval.
- NOTE: This is talking about the derivative increasing or decreasing...
- To talk about the derivative increasing or decreasing we need to be able to find the second derivative, f".

Test for Concavity

- Let *f* be a function whose second derivative exists on an open interval *I*.
 - 1. If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
 - 2. If f''(x) < 0 for all x in I, then the graph of f is concave downward on I

Definition of Point of Inflection

Let f be a function that is continuous on an open interval and let c be a point in the interval. If the graph of f has a tangent line at this point (c, f(c)), then this point is a point of inflection of the graph of f if the concavity of f changes from upward to downward (or downward to upward) at the point.

Theorem 3.8

If (c, f(c)) is a point of inflection of the graph of f, then either f''(x) = 0 or f'' does not exist at x = c.

Examples: Determine the open intervals on which the graph is concave upward or concave downward.

1. $f(x) = -x^3 + 3x^2 - 2$ First derivative: $f'(x) = -3x^2 + 6x$ Second derivative: f''(x) = -6x + 6Solve f''(x) = 0: 0 = -6x + 6x = 1

Use the number line approach like we did for critical numbers.

Using x = 1 and f''(x) = -6x + 6

$$f''(0) = -6(0) + 6 = positive$$

 $f''(2) = -6(2) + 6 = negative$

Concave Up: $(-\infty, 1)$ Concave Down: $(1, \infty)$ Examples: Determine the open intervals on which the graph is concave upward or concave downward.

2. $y = x^5 - 5x + 2$ First derivative: $y' = 5x^4 - 5$ Second derivative: $y'' = 20x^3$

We know the second derivative is zero when x is zero, positive when x is positive, and negative when x is negative.

Concave up: $(0, \infty)$ Concave down: $(-\infty, 0)$

Examples: Determine the open intervals on which the graph is concave upward or concave downward.

3.
$$f(x) = \frac{x^2}{x^2+1}$$

First derivative:

$$f'(x) = \frac{(x^2 + 1)2x - x^2(2x)}{(x^2 + 1)^2} = \frac{2x}{(x^2 + 1)^2}$$

Second derivative:

$$f''(x) = \frac{(x^2 + 1)^2(2) - 2x(2(x^2 + 1)(2x))}{(x^2 + 1)^4}$$

$$f''(x) = \frac{(x^2 + 1)^2(2) - 2x(2(x^2 + 1)(2x))}{(x^2 + 1)^4}$$
$$= \frac{2(x^2 + 1) - 8x^2}{(x^2 + 1)^3} = \frac{2 - 6x^2}{(x^2 + 1)^3}$$

- Denominator is always positive.
- Numerator: $0 = 2 6x^2 \rightarrow 6x^2 = 2$ which becomes $x^2 = \frac{1}{3} \rightarrow x = \pm \sqrt{1/3} = \pm \frac{\sqrt{3}}{3}$

Using
$$f''(x) = \frac{2-6x^2}{(x^2+1)^3}$$

 -5
 -5
 $-\frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3}$
 $-\frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3}$
 $-f''(-5) = \frac{2-6(-5)^2}{positive} = \frac{neg}{pos} = neg$
 $f''(0) = \frac{2}{pos} = pos$
 $f''(5) = \frac{2-6(5)^2}{positive} = neg$
Concave Up: $(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$
Concave Down: $(-\infty, -\frac{\sqrt{3}}{3}), (\frac{\sqrt{3}}{3}, \infty)$

Second Derivative Test

- Let f be a function such that f'(c) = 0 and the second derivative of f exists on an open interval containing c.
 - 1. If f''(c) > 0, then f has a relative minimum at (c, f(c)).
 - 2. If f''(c) < 0, then f has a relative maximum at (c, f(c)).
 - 3. If f''(c) = 0 the test fails. That is, f may have a relative maximum, a relative minimum, or neither. In such cases revert to the first derivative test.

1.
$$f(x) = -x^4 + 24x^2$$

First derivative:

$$f'(x) = -4x^3 + 48x$$

First derivative will give us critical numbers, increasing and decreasing, and extrema.

Solve:
$$0 = -4x(x^2 - 12)$$

 $x = 0$ and $x = \pm 2\sqrt{3}$

Examples: Find all relative extrema. Use the Second Derivative Test where applicable. 1. $f(x) = -x^4 + 24x^2$

First derivative:

$$f'(x) = -4x^3 + 48x$$

Second derivative:

$$f''(x) = -12x^2 + 48$$

Second derivative gives us location of points of inflection, concavity, and extrema classifications.

$$0 = -12x^2 + 48$$
$$x^2 = 4 \rightarrow x = \pm 2$$

Derivatives: $f'(x) = -4x^3 + 48x$ and $f''(x) = -12x^2 + 48$

$$f'(-4) = 64 \qquad f'(-1) = -44$$

$$f'(1) = 44 \qquad f'(4) = -64$$

$$f''(-4) = neg \qquad f''(1) = pos$$

$$f''(4) = neg$$

Putting this on the number line we have:

Inc: $(-\infty, -2\sqrt{3}), (0, 2\sqrt{3})$ Dec: $(-2\sqrt{3}, 0), (2\sqrt{3}, \infty)$ CC Up: (-2, 2) CC Down: $(-\infty, -2), (2, \infty)$ Max Points: $(\pm 2\sqrt{3}, 144)$ Min Point: (0, 0)Points of Inflection: $(\pm 2, 80)$

The graph of $f(x) = -x^4 + 24x^2$

2.
$$f(x) = -(x - 5)^2$$

1st derivative: $f'(x) = -2(x - 5) = -2x + 10$
2nd derivative: $f''(x) = -2$
Critical number $x = 5$, no points of inflection
 \checkmark

Inc: $(-\infty, 5)$ Dec: $(5, \infty)$ Max: (5, 0)CC Up: neverCC down: $(-\infty, \infty)$

The graph of
$$f(x) = -(x-5)^2$$

3.
$$f(x) = x^3 - 5x^2 + 7x$$

First derivative:

$$f'(x) = 3x^2 - 10x + 7 = (3x - 7)(x - 1)$$

Second derivative: f''(x) = 6x - 10

Critical Numbers: $x = \frac{7}{3}$, 1 (possible max/min)

Zeros of 2nd: $x = \frac{5}{3}$ (possible point of inflection)

Derivatives:
$$f'(x) = 3x^2 - 10x + 7$$
 and $f''(x) = 6x - 10$

The graph of $f(x) = x^3 - 5x^2 + 7x$

4.
$$g(x) = -\frac{1}{8}(x+2)^2(x-4)^2$$

First derivative

$$g'(x) = -\frac{1}{8} [(x+2)^2 2(x-4) + (x-4)^2 2(x+2)]$$

= $-\frac{1}{8} [2(x+2)(x-4)(x+2+x-4)]$
= $-\frac{1}{4} (x+2)(x-4)(2x-2)$
= $-\frac{1}{2} (x+2)(x-4)(x-1)$

Examples: Find all relative extrema. Use the Second Derivative Test where applicable. 4. $g(x) = -\frac{1}{8}(x+2)^2(x-4)^2$

Second derivative:

$$g''(x) = -\frac{1}{2}[(x+2)(x-4) + (x+2)(x-1) + (x-4)(x-1)]$$

$$= -\frac{1}{2}[x^2 - 2x - 8 + x^2 + x - 2 + x^2 - 5x + 4]$$

$$= -\frac{1}{2}[3x^2 - 6x - 6] = -\frac{3}{2}(x^2 - 2x - 2)$$

4.
$$g(x) = -\frac{1}{8}(x+2)^2(x-4)^2$$

First: $g'(x) = -\frac{1}{2}(x+2)(x-4)(x-1)$
Second: $g''(x) = -\frac{3}{2}(x^2-2x-2)$
CN: $x = -2, 4, 1$ Possible POI: $x = 1 \pm \sqrt{3}$

Function: $g(x) = -\frac{1}{8}(x+2)^2(x-4)^2$ First: $g'(x) = -\frac{1}{2}(x+2)(x-4)(x-1)$ Second: $g''(x) = -\frac{3}{2}(x^2 - 2x - 2)$ -2 1-13 1 1113 4 g'(-4) = + g'(0) = - g'(2) = + g'(10) =g''(-4) = - g''(0) = + g''(10) = +Inc: $(-\infty, -2)$, (1,4) Dec: (-2,1), $(4,\infty)$ CC Up: $(1 - \sqrt{3}, 1 + \sqrt{3})$

CC Down: $(-\infty, 1 - \sqrt{3}), (1 + \sqrt{3}, \infty)$

Maximum Points: (-2,0) and (4,0)

Minimum Point: $(1, -\frac{81}{8})$

Points of Inflection:
$$(1 - \sqrt{3}, -\frac{9}{2})$$
 and $(1 + \sqrt{3}, -\frac{9}{2})$

The graph of
$$g(x) = -\frac{1}{8}(x+2)^2(x-4)^2$$

5.
$$y = \frac{x}{x-1}$$

1st derivative: $y' = \frac{(x-1)(1)-x(1)}{(x-1)^2} = \frac{-1}{(x-1)^2}$
2nd derivative:
 $y'' = \frac{(x-1)^2(0) - (-1)2(x-1)(1)}{(x-1)^4} = \frac{2}{(x-1)^3}$

The only critical number for either derivative occurs at x = 1. Notice this value is not in the domain of the original function either.

Using
$$y' = \frac{-1}{(x-1)^2}$$
 and $y'' = \frac{2}{(x-1)^3}$ and $x = 1$:

$$y'(0) = \frac{neg}{pos} \qquad y'(2) = \frac{neg}{pos} \qquad \text{Dec:} (-\infty, 1), (1, \infty)$$
$$y''(0) = \frac{pos}{neg} \qquad y''(2) = \frac{pos}{pos}$$
$$\text{CC Up:} (1, \infty) \qquad \text{CC down:} (-\infty, 1)$$

No extrema as x = 1 is not in the domain of the function.

The graph of
$$y = \frac{x}{x-1}$$

End of Lecture