Newton's Method

By Tuesday J. Johnson

Suggested Review Topics

- Algebra skills reviews suggested:
 - None
- Trigonometric skills reviews suggested:
 - None

Applications of Differentiation

Newton's Method

Newton's Method for Approximating the Zeros of a Function

- Let f(c) = 0, where f is differentiable on an open interval containing c. Then, to approximate c, use the following steps.
 - 1. Make an initial estimate x_1 that is close to c. (A graph is helpful.)
 - 2. Determine a new approximation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

3. If $|x_n - x_{n+1}|$ is within the desired accuracy, you have your final approximation. Otherwise, return to step 2 and calculate a new approximation.

Facts

 Each successive application of the procedure is called an iteration.

 This is the same process your graphing calculator (which you aren't allowed to use) uses when asked to find a zero. Examples: Complete two iterations of Newton's Method for the function using the given initial guess.

1.
$$f(x) = x^3 - 3$$
 with $x_1 = 1.4$

First, find the derivative: $f'(x) = 3x^2$

For $x_1 = 1.4$ we will have

$$x_2 = 1.4 - \frac{f(1.4)}{f'(1.4)} = 1.4 - \frac{(1.4)^3 - 3}{3(1.4)^2} = 1.4435$$

Now with $x_2 = 1.4435$ we will have

$$x_3 = 1.4435 - \frac{f(1.4435)}{f'(1.4435)}$$
$$= 1.4435 - \frac{1.4435^3 - 3}{3(1.4435)^2} = 1.4423$$

Examples: Complete two iterations of Newton's Method for the function using the given initial guess.

1.
$$f(x) = x^3 - 3$$
 with $x_1 = 1.4$

- We have $x_1 = 1.4$, $x_2 = 1.4435$, and $x_3 = 1.4423$.
- We see that both x_2 and x_3 are accurate to two decimal places so our answer would be 1.44.

Examples: Complete two iterations of Newton's Method for the function using the given initial guess.

2.
$$f(x) = \tan x$$
 with $x_1 = 0.1$

First, find the derivative: $f'(x) = sec^2x$

For $x_1 = 0.1$ we will have

$$x_2 = 0.1 - \frac{f(0.1)}{f'(0.1)} = 0.1 - \frac{\tan(0.1)}{\sec^2(0.1)} = 0.000 665 3$$

Now with $x_2 = 0.000 665 3$ we will have

$$x_3 = 0.000 665 3 - \frac{\tan(0.000 665 3)}{\sec^2(0.000 665 3)}$$
$$= 0.000 000 000 196$$

This is a pretty accurate zero.

Examples: Approximate the zero(s) of the function. Use Newton's Method and continue the process until two successive approximations differ by less than 0.001.

1.
$$f(x) = x^5 + x - 1$$

The derivative is $f'(x) = 5x^4 + 1$.

It looks like there is a zero just below x = 1. Let's start there:

$$x_1 = 1$$

$$x_2 = 1 - \frac{f(1)}{f'(1)} = 1 - \frac{1}{6} = \frac{5}{6} \approx 0.83333$$

1.
$$f(x) = x^5 + x - 1$$

The derivative is $f'(x) = 5x^4 + 1$.

erivative is
$$f'(x) = 5x^4 + 1$$
.
 $x_1 = 1$
 $x_2 = 1 - \frac{f(1)}{f'(1)} = 1 - \frac{1}{6} = \frac{5}{6} \approx 0.83333$
 $x_3 = \frac{5}{6} - \frac{f\left(\frac{5}{6}\right)}{f'\left(\frac{5}{6}\right)} = \frac{10138}{13263} \approx 0.76438$
 $x_4 = 0.76438 - \frac{f(0.76438)}{f'(0.76438)} \approx 0.75502$
 $x_5 = 0.75502 - \frac{f(0.75502)}{f'(0.75502)} \approx 0.75487770$
 $x_6 = 0.75488 - \frac{f(0.75488)}{f'(0.75488)} \approx 0.754877666$

1.
$$f(x) = x^5 + x - 1$$

 $x_5 = 0.75502 - \frac{f(0.75502)}{f'(0.75502)} \approx 0.75487770$
 $x_6 = 0.75488 - \frac{f(0.75488)}{f'(0.75488)} \approx 0.754877666$

These last two values are within 0.0001 of each other so we will accept x_6 as our solution.

Examples: Approximate the zero(s) of the function. Use Newton's Method and continue the process until two successive approximations differ by less than 0.001.

2.
$$f(x) = x - 2\sqrt{x+1}$$

The derivative is $f'(x) = 1 - \frac{1}{\sqrt{x+1}}$.

It looks like there is a zero near x = 5. Let's start there:

$$x_1 = 1$$

$$x_2 = 5 - \frac{f(5)}{f'(5)} \approx 4.8292856399$$

2.
$$f(x) = x - 2\sqrt{x+1}$$

The derivative is
$$f'(x) = 1 - \frac{1}{\sqrt{x+1}}$$
.
$$x_1 = 5$$

$$x_2 = 5 - \frac{f(5)}{f'(5)} \approx 4.8292856399$$

$$x_3 = 4.8292856399 - \frac{f(4.8292856399)}{f'(4.8292856399)}$$

 ≈ 4.8284271471

$$x_4 = 4.8284271471 - \frac{f(4.8284271471)}{f'(4.8284271471)}$$

$$\approx 4.82842712475$$

2.
$$f(x) = x - 2\sqrt{x+1}$$

$$x_3 \approx 4.8284271471$$

 $x_4 \approx 2842712475$

These last two approximations are similar to seven decimal places. We will take x_4 as our approximation of the zero of the given function.

End of Lecture

There is another PowerPoint of Newton's
 Method on my website just below this lecture.

 There is also a video quiz that will help you understand Newton's Method in more detail.