Chapter Three: Exponential and Logarithmic Functions

3.1 Exponential Functions and Their Graphs

X

Definition of Exponential Function — The exponential function f with base 'a’is denoted by f(x) =a
where a >0,a #1, and x is any real number.
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Fact: The graph of f(x) = a" has one of two basic forms. If 0 < a <1, the graph is decreasing and if

a >1, the graph is increasing. It has y-intercept (0, 1) and is a 1-1 monotonic function. The domain is all

real numbers and the range is all y > 0. For 0 < a <1, we frequently think of a horizontal rotation and

refer to it as f(x) =a",a>1.
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Knowing the basic shape, we can now transform the graph using the concepts from chapter 1.

Examples: Graph the function. Label at least three points with exact values.
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Examples: Use the graph of f to describe the transformation that yields the graph of g.

L f(x)=3" g(x)=3"+1
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Many times, the best base to use is the irrational number e ~2.718281828..... This number is called the
natural base (because it is natural for mathematicians and scientists to use it). The function given by

f(x) =e" is called the natural exponential function. When working with the natural base, do NOT use

the decimal approximation; always use the value of e stored in your scientific calculator. Notice that
since e > 1, we know what its graph will look like.
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Formulas for Compound Interest — After t years, the balance A in an account with principal P and annual
interest rate r (in decimal form) is given by the following formulas.

r
1. For n compoundings per year: A= P(1+— weeldn n=s2
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2. For continuous compounding: A = Pe” A l‘;g = 3bLS
_—? Leel n<y
Ths Yormola Concs 7imriey,

ete.
Seom leting n qet ff4llj

,Argt o Sormola A

Examples: Complete the table to determine the balance A for $2500 invested at 4% and compounded n
times per year for 20 years.

n 1 2 4 12 365 Continuous
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Example: The number V of computers infected by a computer virus increases according to the model

V(t) =100e""*  where t is the time in hours. Find the number of computers infected after (a) 1 hour,

(b) 1.5 hours, and (c) 2 hours.
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