3.2 Logarithmic Functions and Their Graphs

Definition of Logarithmic Function with Base a—Forx >0, 0 >0, anda #1, y = loga xif and only if
X = ayx. The function given by f(x) =log, x is called the logarithmic function with base a.
-

G” & /064\‘;-”/\.0'/\ 1S, 15 an expoam-l—,

Examples: Write in exponential form.
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Examples: Write in logarithmic form.
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Properties of Logarithms:

1. log, 1=0 because a’ =1 2. log, a=1 because a' =a
3. log,a" =x and a™* =x 4.1flog, x=log, y,thenx=y.
Examples: Simplify
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Fact: The graph of the logarithmic function is the inverse of the graph of the exponential function. This
means that the x-intercept is (1, 0), the domain is x > 0 and the range is all real numbers. (Recall the
inverse switches x and y, domain and range.) Using this basic knowledge we can move the log graph all

over the coordinate system.
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Definition of the Natural Logarithmic Function — The function defined by f(x) =log,x=Inx, x>0 is

called the natural logarithmic function.
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Fact: All the properties of logarithms still hold with base e.

Examples: Use the one-to-one property to solve the equation.
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Example: Students in a mathematics class were given an exam and then retested monthly with an
equivalent exam. The average scores for the class are given by the human memory model

f(t) =80 —1710g(t + 1), 0<¢<12 where tis the time in months.

a) Sketch a basic graph of the function.
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b) What was the average score on the original exam (t = 0)?

Solution: The average on the original exam was
f(O) = 80—17log(0+1) =80—17log(1) :80—17(0) =80
c) What was the average score after month 4?

Solution: After month 4 we would use t = 4 to get

f(4) =80—17log(4+1) =80-17log5=68.1

d) What was the average score after month 10?

Solution: After month 10 we would use t = 10 to get
f(lO) =80= 1710g(10+1) =80-17logl1=62.3



