3.4 Exponential and Logarithmic Equations

Strategies for Solving Exponential and Logarithmic Equations

1. Rewrite the original equation in a form that allows the use of the one-to-one properties of exponential and logarithmic functions.

2. Rewrite an exponential equation in logarithmic form and apply the inverse property of logarithmic functions.

3. Rewrite a logarithmic equation in exponential form and apply the inverse property of exponential functions.

Examples: Solve.

1. $4^x = 16$

 We can rewrite each side of this equation with the same base in order to use the one-to-one property of equality:

 $4^x = 4^2$ therefore $x = 2$

2. $\left(\frac{1}{4}\right)^x = 64$

 Rewriting each side we get $\frac{1}{4} = 4^{-1}$ and $64 = 4^3$

 Which becomes $(4^{-1})^x = 4^3$ or $4^{-x} = 4^3$. Therefore $-x = 3$ and $x = -3$.

3. $\ln x - \ln 5 = 0$

 The easiest way would be to add $\ln 5$ to both sides for the use of the one-to-one property of equality:

 $\ln x = \ln 5$ becomes $x = 5$.

4. $e^x = 5$

 There is no chance of rewriting to the same base so we convert forms: If $e^x = 5$, then $x = \ln 5 \approx 1.609$
5. \(\log x = -2 \)

 Switch forms with a base of 10

 \(10^{-2} = x \)

 So \(\frac{1}{10^2} = x \) or \(10^{-2} = x \)

6. \(\log_5 x = \frac{1}{2} \)

 \(5^{1/2} = x \)

 \(\sqrt{5} = x \approx 2.236 \)

7. \(e^{2x} = e^{x-8} \)

 Same base so: \(2x = x - 8 \)

 To solve a quadratic, set it equal to zero and factor or use the formula

 \(\Delta = x - 2x - 8 \)

 \(\Delta = (x-4)(x+2) \)

 \(x = 4 \) or \(x = -2 \)

8. \(2(5^x) = 32 \)

 Isolate the exponential: \(\frac{2(5^x)}{2} = \frac{32}{2} \)

 \(5^x = 16 \)

 Now rewrite to solve: \(x = \log_5(16) \approx 2.723 \)

 \(x \) is the power to which \(5 \) is raised to get 16

9. \(6^x + 10 = 47 \)

 Isolate: \(6^x + 10 - 10 = 47 - 10 \)

 \(6^x = 37 \)

 Rewrite: \(x = \log_6(37) \approx 2.015 \)

10. \(4^{-3t} = 0.10 \)

 \(-3t = \log_4(0.10) \)

 \(t = \frac{\log_4(0.10)}{-3} \)

 \(t = \frac{\log(0.10)}{\log(4)} \approx 0.554 \)
11. $2^{x-3} = 32$

 Let it be easy when you can

 $2^{x-3} = 2^5$

 so $x - 3 = 5$

 $x = 8$

12. $8(3^{6-x}) = 40$

 $\frac{8}{3^{6-x}} = \frac{40}{8}$

 $3^{6-x} = 5$

 $-x = \log_3 5 - 6$

 $x = 6 - \log_3 5$

 $x \approx 4.535$

13. $e^{2x} - 5e^x + 6 = 0$

 This is called quadratic in form because it looks like $y^2 - 5y + 6 = 0$.

 For this reason we factor:

 $(e^x - 3)(e^x - 2) = 0$

 $e^x - 3 = 0$ or $e^x - 2 = 0$

 $e^x = 3$ or $e^x = 2$

 $x = \ln 3 \approx 1.099$ or $x = \ln 2 \approx 0.693$

14. $e^{2x} + 9e^x - 36 = 0$

 $(e^x + 12)(e^x - 3) = 0$

 $e^x + 12 = 0$ or $e^x - 3 = 0$

 $e^x = -12$ or $e^x = 3$

 Not in range of e

 $x = \ln 3 \approx 1.099$

15. $\ln(x+1) - \ln(x-2) = \ln x$

 Rewrite the left:

 $\ln \frac{x+1}{x-2} = \ln x$

 Use 1-1 property:

 $\frac{x+1}{x-2} = x$

 Solve:

 $(x-1) \cdot \frac{x+1}{x-2} = x \cdot (x-1)$

 $x + 1 = x^2 - 2x - x - 1$

 $0 = x^2 - 3x - 1$

 $x = \frac{3\pm \sqrt{13}}{2}$

 $x > \frac{3+\sqrt{13}}{2}$ or $x < \frac{3-\sqrt{13}}{2}$

 $x > \frac{3+\sqrt{13}}{2}$

 Bigger than 3 so ok

 $x < \frac{3-\sqrt{13}}{2}$

 Negative so not ok
16. \(\log_{4} x - \log_{4} (x-1) = \frac{1}{2} \)

- **Combine:** \(\log_{4} \frac{x}{x-1} = \frac{1}{2} \)
- **Rewrite:** \(4^{\frac{1}{2}} = \frac{x}{x-1} \)
- **Simplify:** \(\sqrt{4} = 2 = \frac{x}{x-1} \)

- **Solve:** \((x-1)2 = \frac{x}{x-1} \cdot (x-1)\)

 \(2x - 2 = x \)

 \(x = 2 \)

17. \(\log_{3} x + \log_{3} (x-8) = 2 \)

- \(\log_{3} (x^{2} - 8x) = 2 \)

 \(\frac{2}{3} = x - 8x \)

 \(9 = x - 8x \)

 \(0 = x^{2} - 8x - 9 \)

- **Solve:** \(\Delta = (x-9)(x+1) \)

 \(x-9 = 0 \quad \text{or} \quad x+1 = 0 \)

 \(x = 9 \quad \text{or} \quad x = -1 \)

Note: Not in the domain of the original expression; so not an acceptable answer.