3.5 Exponential and Logarithmic Models

The five most common types of mathematical models involving exponential functions and logarithmic functions are as follows:

1. Exponential growth model
 \[y = ae^{bx}, \ b > 0 \]

2. Exponential decay model
 \[y = ae^{-bx}, \ b > 0 \]

3. Gaussian model
 \[y = ae^{-(x-c)^2/c} \]

4. Logistic growth model
 \[y = \frac{a}{1 + be^{-rx}} \]

5. Logarithmic models
 \[y = a + b \ln x, \ y = a + b \log x \]

Examples:

1. Determine the principal P that must be invested at 5%, compounded monthly, so that $500,000 will be available for retirement in 10 years.

 \[A = P \left(1 + \frac{0.05}{12}\right)^{12t} \]
 \[500,000 = P \left(1 + \frac{0.05}{12}\right)^{120} \]
 \[500,000 = P \left(1.004167\right)^{120} \]
 \[\frac{500,000}{\left(1.004167\right)^{120}} = P = \$303580.52 \]

2. Determine the time necessary for $1000 to double if it is invested at 6.5% if it is compounded

 a) annually
 \[A = 2000 \]
 \[\frac{2000 = 1000 \left(1 + \frac{0.065}{1}\right)^{1t}}{1000} \]
 \[t = 10 \log_{1.065} (2) \]
 \[t = 11 \text{ years} \]

 b) monthly
 \[2000 = 1000 \left(1 + \frac{0.065}{12}\right)^{12t} \]
 \[2 = \left(1 + \frac{0.065}{12}\right)^{12t} \]
 \[12t = \log_{1.005417} (2) \]
 \[t = \frac{\log_{1.005417} (2)}{12} \approx 10.69 \text{ yrs} \]

 c) daily
 \[2000 = 1000 \left(1 + \frac{0.065}{365}\right)^{365t} \]
 \[2 = \left(1 + \frac{0.065}{365}\right)^{365t} \]
 \[365t = \log_{1.000183} (2) \]
 \[t = \frac{\log_{1.000183} (2)}{365} \approx 10.66 \text{ yrs} \]
3. Carbon 14 decays with a half-life of 5715 years. Find how much remains from a 6.5 g sample after 1000 years.

\[y = a e^{-bx} \]

where \(a \) is initial amount, \(b \) is decay constant and \(x \) is time

Half-life: amount of time for \(\frac{1}{2} \) substance to decay.

Strategy: we know \(a = 6.5 \text{g} \) but we must find decay constant \(b \)

Then we use \(a + b \) to find \(y \):

\[
\frac{1}{2} = e^{-5715b} \implies -5715b = \ln(\frac{1}{2}) \implies b = \frac{-\ln(\frac{1}{2})}{-5715} = 1.213 \times 10^{-4}
\]

So \(b = 0.0001213 \)

Now \(y = 6.5 e^{-0.0001213(1000)} = 5.7576 \) or approx 5.8 grams

4. The populations \(P \) (in thousands) of Horry County, South Carolina from 1970 through 2007 can be modeled by \(P = 18.5 + 92.2e^{0.0282t} \), where \(t \) represents the year, with \(t = 0 \) corresponding to 1970.

<table>
<thead>
<tr>
<th>Years since 1970</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population in thousands</td>
<td>73.7</td>
<td>103.7</td>
<td>143.6</td>
<td>196.9</td>
<td>243.2</td>
</tr>
</tbody>
</table>

Not 73.7 people, but 73.7 thousand people = 73.7\times1000 = 73,700

b) According to the model, when will the population of Horry County reach 300,000?

\[300,000 = 300 \text{ thousand} \text{ so we solve } 300 = -18.5 + 92.2e^{0.0282t} \text{ for } t. \]

\[t = \frac{\ln\left(\frac{318.5}{92.2}\right)}{0.0282} \]

\[318.5 = 92.2 e^{0.0282t} \]

\[\ln\left(\frac{318.5}{92.2}\right) = 0.0282t \]

\[318.5 = 92.2 e^{0.0282t} \]

\[t = 43.95 \text{ or 44 yrs from 1970} \rightarrow \text{In the year } 2014. \]
c) Do you think the model is valid for long-term predictions of the population?

What do you think and why?

5. The number of bacteria in a culture is increasing according to the law of exponential growth. After 3 hours, there are 100 bacteria, and after 5 hours, there are 400 bacteria. How many bacteria will there be after 6 hours?

We do not know initial amount or how quickly they grow, growth rate. But we do know two values:

3 hrs, 100 bacteria gives $100 = ae^{b(3)}$ or $100 = ae^{3b}$
5 hrs, 400 bacteria gives $400 = ae^{5b}$. The $a + b$ in each equation is the same so we solve one equation for a: $\frac{100}{e^{3b}} = a$ then substitute it into the other equation: $400 = \frac{100 e^{5b}}{e^{3b}}$. Now we have one equation with one variable and we can find the value of b.

$400 = \frac{100 e^{5b}}{e^{3b}} \rightarrow 400 = 100 e^{2b} \rightarrow y = e^{2b} \rightarrow 2b = \ln 4 \rightarrow b = \frac{\ln(4)}{2} \approx 0.6931$

With b, we can find a in the blue equation: $\frac{100}{e^{3(0.6931)}} = a \approx 12.5$

But we’re not finished yet! The question asks how many bacteria after 6 hours. $y = ae^{bx}$ at 6 hours is $y = 12.5 e^{0.6931(6)} \approx 799.8$ or 800 bacteria.

You can also use a graphing calculator to find an exponential regression. Be careful! My calculator gave $a = 12.5$ and $b = 2$. You must pay attention to the form of the answer.*

We used $y = ae^{bx}$ to find a and b. The calculator uses $y = a(b)^x$. Either way, $y = 12.5(2)^6 = 800$.

*Note: The asterisk indicates a critical detail about the calculation process.
6. At 8:30 A.M., a coroner was called to the home of a person who had died during the night. In order to estimate the time of death, the coroner took the person’s temperature twice. At 9:00 A.M. the temperature was 85.7 degrees, and at 11:00 A.M. the temperature was 82.8 degrees. From these two temperatures, the coroner was able to determine that the time elapsed since death and the body temperature were related by the formula

\[t = -10 \ln \left(\frac{T - 70}{98.6 - 70} \right) \]

where \(t \) is the time in hours elapsed since the person died and \(T \) is the temperature (in degrees F) of the person’s body. (This formula is derived from Newton’s Law of Cooling.) Use the formula to estimate the time of death of the person.

\[t = -10 \ln \left(\frac{85.7 - 70}{98.6 - 70} \right) = 6 \text{ hours earlier} \]

\[t = -10 \ln \left(\frac{82.8 - 70}{98.6 - 70} \right) = 3 \text{ hours earlier} \]

either way, time of death was approximately 3:00 A.M.