INVERSE TRIGONOMETRIC FUNCTIONS

SECTION 4.7

THE SINE FUNCTION

The graph of $y=\sin x$ is not 1-1 so it does not have an inverse.

If we restrict the function to a specific domain, it becomes 1-1 and takes on all values of the range.

THE INVERSE SINE FUNCTION

Using the properties of inverses we discussed earlier, we switch input and outputs to get the inverse sine function.

Note that the domains and ranges have switched.

THE COSINE FUNCTION

Similarly $y=\cos x$ is not 1-1

So we restrict it

 appropriately

Domain: $0 \leq x \leq \pi$
Range: $-1 \leq y \leq 1$

INVERSE COSINE FUNCTION

The restricted gets the inverse treatment...

$\begin{array}{lr}\text { Domain: } & 0 \leq x \leq \pi \\ \text { Range: } & -1 \leq y \leq 1\end{array}$

So that we can get the inverse cosine function

$$
\begin{array}{cc}
\text { Domain: } & -1 \leq x \leq 1 \\
\text { Range: } & 0 \leq y \leq \pi
\end{array}
$$

THE TANGENT FUNCTION

The original, not 1-1
Make it 1-1

INVERSE TANGENT FUNCTION

The restricted gets "inversed."

To become

DEFINITIONS OF THE INVERSE TRIGONOMETRIC FUNCTIONS

- $y=\arcsin x=\sin ^{-1} x$ if and only if $\sin y=x$
- Domain: $-1 \leq x \leq 1$
- Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
- $y=\arccos x=\cos ^{-1} x$ if and only if $\cos y=x$
- Domain: $-1 \leq x \leq 1$
- Range: $0 \leq y \leq \pi$
- $y=\arctan x=\tan ^{-1} x$ if and only if $\tan y=x$
- Domain: $-\infty<x<\infty$
- Range: $-\frac{\pi}{2}<y<\frac{\pi}{2}$

