INVERSE TRIGONOMETRIC FUNCTIONS

SECTION 4.7

THE SINE FUNCTION

The graph of y=sinx is not 1-1 so it does not have an inverse.

If we restrict the function to a specific domain, it becomes 1-1 and takes on all values of the range.

THE INVERSE SINE FUNCTION

Using the properties of inverses we discussed earlier, we switch input and outputs to get the inverse sine function.

Note that the domains and ranges have switched.

THE COSINE FUNCTION

Similarly y=cosx is not 1-1

So we restrict it appropriately

INVERSE COSINE FUNCTION

The restricted gets the inverse treatment...

So that we can get the inverse cosine function

THE TANGENT FUNCTION

The original, not 1-1

INVERSE TANGENT FUNCTION

DEFINITIONS OF THE INVERSE TRIGONOMETRIC FUNCTIONS

- $y = \arcsin x = \sin^{-1} x$ if and only if $\sin y = x$
 - Domain: $-1 \le x \le 1$
 - Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
- $y = \arccos x = \cos^{-1} x$ if and only if $\cos y = x$
 - Domain: $-1 \le x \le 1$
 - Range: $0 \le y \le \pi$
- $y = arctanx = tan^{-1}x$ if and only if tany = x
 - Domain: $-\infty < x < \infty$

• Range:
$$-\frac{\pi}{2} < y < \frac{\pi}{2}$$