10.5 Derivatives: Numerical and Graphical Viewpoints

Definition: The instantaneous rate of change of f(x) at x = a is defined as

f(a+h)—f(a)
h

f'(a)=lim,

The quantity f'(a) is also called the derivative of f(x) at x = a. Finding the derivative is also known as
differentiating f. The units of f’(a) are the same as the units of the average rate of change: units of f per
unit of x.

If this limit does not exist, for whatever reason, we say that fis not differentiable at x = a, or f’(a) does
not exist.

A tangent line to a circle is a line that touches the circle in just one point. A tangent line gives the circle
"a glancing blow." For a smooth curve other than a circle, a tangent line may touch the curve at more
than one point, or pass through it. However, all tangent lines have the following interesting property in
common: If we focus on a small portion of the curve very close to the point P the curve will appear
almost straight, and almost indistinguishable from the tangent line.
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Secants and Tangents

The ﬂgge’oj_t_he_swgthrough the points on the graph of f where x = a and x = a+h is given by the
average rate of change, or difference quotient, m, . = slope of secant = average rate of change =
f(a+h)-f(a)

P .

The slope of the tan line through the point on the graph of f where x = a is given by the

instantaneous rate of change, or derivative m

f(a+h)—f(a)
h

=slope of tangent = derivative =

tan

f'(a)=lim,

Notice that this is saying that the slope of the tangent line is a good way to estimate the derivative at a
certain point graphically.



Example: Estimate the derivative of r(x) from the table of average rates of change. r’(5) =

h 1 0.1 0.01 0.001 0.0001
Avgr.o.c. of r 4.5 6.44 6.474 6.49928 6.4999990
over [5,5+h]

h -1 -0.1 -0.01 -0.001 -0.0001
Avgr.o.c. of r 8.0 6.54 6.528 6.50044 6.5000066
over [5+h,5]
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Example: Consider the function R(t) =60t —3t* as representing the value of an ounce of palladium in

D= 6.5

U.S. dollars as a function of the time t in days. Find the average rate of change of R(t) over the time
intervals [3, 3+h], where h =1, 0.1, and 0.01 days. Round your answer to two decimal places.
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Next, estimate the instantaneous rate of change of R at time t, specifying the units of measurement.
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Approximating We can calculate an approximate value of f/(a) by using the formula
' fla+h)-f(a
ey Ll (@)
h
alternative formula, which measures the rate of change of f over the interval [a-h,a+h], often gives a
f(a+h)—f(a—h)

more accurate result, and is the one used in many calculators: f'(a) = .

2h

with a small value of h. The value h =0.0001 often works. The following

Examples: Estimate each derivative in two ways. Round your answer to three decimal places.

1 f(x) =§—6 when x = -4. Find f'(-4)
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Notation Two guys came up with calculus independently about 16 years apart. These guys were Newton

A

and Leibniz. Today we use parts of each theory. Recall that the average rate of change was E and

. A
instantaneous rate of change would then be lim, Ef , but delta is a Greek letter and Leibniz was

d . A d
German so he used a’l =lim, ,, Ef . NOTE: dl is not a fraction, it is a whole unit unto itself that does
x x



d
not follow the rules of fractions and such. The — portion is called an operator, it is telling you to find
x

the derivative of f with x as your variable.

The Derivative Function

The derivative f'(x) is a number we can calculate, or at least approximate, for various values of x.

Because f'(x) depends on the value of x, we may think of f as a function. This function is the derivative
function.

f(x+h)—f(x) .
h

Definition: If fis a function, its derivative function f'(x) is given by f'(x) =lim, ,

Definition. For an object moving in a straight line with position s(t) at time t, the average velocity from
time t to time t+h is the average rate of change of position with respect to time:

_ S(t+h)—s(t) _As

e h At

s(t+h)—s(t)
h

velocity is the derivative of position with respect to time.

. S .
The instantaneous velocity at time tis v= hmh_w = z In other words, instantaneous
t

Example: If a stone is thrown down at 80 ft/sec from a height of 950 feet, its height after t seconds is
given by s =950—807 —16¢" .

a) Find its average velocity over the period [1, 5].
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b) Estimate its instantaneous velocity at time t = 5.

S(5+hY - s(s) |Mﬁ'3—b—%0(5+h\—lé(f+h)z _ )50

— \\M :L_)—v_/__‘
Viest = o ~ ? L
]
\ 450~L]pp — 0~ (25 + DL+ \;“;b
T Wwao h

2
WZWwa Gw -9 -0l —yop —)Lbw—lbh —13D
W0 N
= lim  —lLh—2dok  — Vvm (—loh -240) = ~l(2)-240 = =240t
\/\—>o N Wb




10.6 The Derivative: Algebraic Viewpoint

The definition of the derivative from the last section allows us to compute the derivative algebraically

without having to estimate with tables or graphs. How? Easy!

Example: Let f(x) 3x” —4.Find f(2).Why 2 specifically? It's not maglc Find f'(x) in general.
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Examples: Compute f'(a) algebraically.
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Examples: Compute f'(x) algebraically.
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Examples: Find the equation of the tangent to the graph at the indicated point.
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Example: If a stone is thrown down at 120 feet per second from a height of 1000 feet, its height after t
seconds is given by S(t) =1000—120¢ —16¢". Find its instantaneous velocity function and its velocity at
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