11.6 Implicit Differentiation

We are used to explicit functions where y is a direct function of x. Now we will talk about implicit functions where we can't solve for y but we always keep in mind that y is a function of x.

Examples: Find dy/dx using implicit differentiation and by solving for *y*.

1. $4x - 5y = 9$ Implicit $4 - 5\frac{2y}{2x} = D$ $-5\frac{2y}{2x} = -4$ $\frac{2y}{2x} = \frac{-4}{-5} = \frac{4}{5}$	explicit: Solve for $y \rightarrow -5y=9-4x$ $y = \frac{9}{-5} - \frac{4x}{-5} = 3y = \frac{4}{5}x - 9$ Derivative $\rightarrow \frac{4y}{4x} = \frac{4}{5} + 0 = \frac{4}{5}$
2. $x - y = xy$ implicit $1 - \frac{dy}{dx} = 1(y) + x \frac{dy}{dx}$ $-y + \frac{dy}{dx} - y + \frac{dy}{dx}$ $1 - y = x \frac{dy}{dx} + \frac{dy}{dx}$ $1 - y = \frac{dy}{dx} (x + i)$ $\frac{1 - y}{x + i} = \frac{dy}{dx}$ implicit T_{D} See	explicit: solve for $y \rightarrow x = xy + y$ x = y(x+i) $\frac{x}{x+i} = y$ $\frac{(x+i)(i) - x(i)}{(x+i)^2} = \frac{dy}{dx}$ derivative $\frac{x+i-x}{(x+i)^2} = \frac{1}{dx} = \frac{dy}{dx}$ explicit that these two are the same
we would ne	ed to substitute for ground

Implicit derivative and simplify.

Examples: Find the derivative dy/dx using implicit differentiation.

1.
$$2x^2 - y^2 = 4$$

 $4x - 2y \frac{dy}{dx} = 0$
 $-2y \frac{dy}{dx} = -4x$
 $\frac{dy}{dx} = \frac{-4x}{-2y}$

2.
$$\frac{xy}{2} - y^2 = 3$$

 $\frac{1}{2}xy - y^2 = 3$
 $\frac{1}{2}xy - y^2 = 3$
 $\frac{1}{2}xy - 2y\frac{dy}{dx} = 0$
 $\frac{dy}{dx} = \frac{-\frac{1}{2}y}{(\frac{1}{2}x - 2y)} + \frac{2}{2} = -\frac{-y}{x - 4y}$
 $\frac{dy}{dx}(\frac{1}{2}x - 2y) = \frac{-1}{2}y$

3.
$$x^2 e^y - y^2 = e^x$$

product
 $2xe^y + x^2 e^y \frac{dy}{dx} - 2y \frac{dy}{dx} = e^x$
 $\frac{dy}{dx}(x^2 e^y - 2y) = e^x - 2xe^y$
 $\frac{dy}{dx} = \frac{e^x - 2xe^y}{x^2 e^y - 2y}$

Examples: Use implicit differentiation to find the slope of the tangent line and the equation of the tangent line at the indicated point.

- 1. $3x^2 y^2 = 1$ (-2,1) a) Find $\frac{dx}{dx}$: $6x - 2y \frac{dx}{dx} = 0$ $-2y \frac{dx}{dx} = -6x$ $\frac{dy}{dx} = \frac{-6x}{-2y} = \frac{3x}{y}$ c) Use m = -6 and $po_1 nt (-2,1)$: y = mx + b 1 = -6(-2) + b 1 = 12 + b -11 = b y = -6x - 11 y = -6x - 11y = -6x - 11
- 2. $\ln(x-y)+1=3x^{2}, x=0$ $A) Find \frac{dx}{dx}: \frac{1-\frac{dx}{dx}}{x-y} + b = 6x$ $\ln(b-y) + 1 = 0$ $\ln(-y) = -1$ $\frac{1}{x-y} \frac{dx}{dx} = 6x$ $-y = e^{-1}$ $y = -e^{-1}$ $y = -e^{-1}$ $\frac{dy}{dx} = -6x(x-y) + 1$ $\frac{dy}{dx} = -6x(x-y) + 1$