Chapter 13 The Integral

13.1 The Indefinite Integral

Definition: An anti-derivative of a function fis a function F such that F' = f.
Example: An anti-derivative of 4x3 is x*; an anti-derivative of 4x3 is x*+2; an anti-derivative of 2x is x?+11.

Fact: If the derivative of A(x) is B(x), then the anti-derivative of B(x) is A(x).

Definition: I f(x)dx is read "the indefinite integral of f(x) with respect to x" and stands for the set of

anti-derivatives of f. Thus, I f(x)dx is a collection of functions; it is not a single function or a number.

The function f that is being integrated is called the integrand, and the variable x is called the variable of
integration.

Think about it, you have the derivative and you want to find the original function. Since the derivative of
a constant is zero, we have no way of knowing what the original constant was. So we use a general Cin
its place and that gives us the family of functions. This is known as the constant of integration. It allows
us to go from talking about ‘an’ anti-derivative to ‘the’ anti-derivatives. (Who knew an English lesson
was in all this mathy stuff?)

Just like there were rules for finding derivatives, there are rules for finding anti-derivatives. These rules,
by necessity, are similar to the ones we had earlier.
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Exponentials
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Sums, Differences, and Constant Multiples
_[ [f(x)ig(x)]dx =I f(x)dxij‘ g(x)dx
In words: the integral of a sum is the sum of the integrals (same with differences).

_[ kf(x)dx = kj f(x)dx for any constant k.

Examples: Find the integral.
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Examples: Applications

1. The marginal cost of producing the xth box of thumb drives is 10+

and the fixed
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cost is $100,000. Find the cost function C(x). 3
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2. The marginal cost of producing the xth box of CDs is 10+ x + —. The total cost to produce

X
100 boxes is $10,000. Find the cost function C(x).
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3. The velocity of a particle moving in a straight line is given by v =3¢’ +¢.

a) Find an expression for the position after time t. _
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b) Given that s = 3 at time t = 0, find the constant of integration C, and hence find an
expression for s in terms of t without any unknown constants.

S
3=3c0*[g xC

5= 30N ro+C

3 =3 +C
D:C S'D



