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Introduction
• In April of 2009 the World Health Organization 

(WHO) announced the emergence of a novel strain 
of A-H1N1 influenza. In June of 2009 WHO declared 
the outbreak to be a pandemic.

• Different continuous time approaches have been 
used to study single influenza outbreaks.

• The identification of optimal control strategies that 
involve antiviral treatment and isolation have also 
been studied in the continuous case. 

• We introduce a optimal control problem in order to 
minimize the number of infected and dead 
individuals via the use of the most ``cost-effective" 
policies involving social distancing and antiviral 
treatment using a discrete time epidemic framework.

http://i.telegraph.co.uk/telegraph/multimedia/archive/01
395/swine-flu-treatmen_1395505c.jpg

http://clovetwo.com/archives/2009
/8/23
/healthnfitness/sf_05distance.jpg

9/28/2010 3
Optimal Control  on a Influenza Model             
Paula A. Gonzalez-Parra 

http://i.telegraph.co.uk/telegraph/multimedia/archive/01395/swine-flu-treatmen_1395505c.jpg
http://i.telegraph.co.uk/telegraph/multimedia/archive/01395/swine-flu-treatmen_1395505c.jpg
http://i.telegraph.co.uk/telegraph/multimedia/archive/01395/swine-flu-treatmen_1395505c.jpg
http://i.telegraph.co.uk/telegraph/multimedia/archive/01395/swine-flu-treatmen_1395505c.jpg
http://i.telegraph.co.uk/telegraph/multimedia/archive/01395/swine-flu-treatmen_1395505c.jpg
http://i.telegraph.co.uk/telegraph/multimedia/archive/01395/swine-flu-treatmen_1395505c.jpg
http://i.telegraph.co.uk/telegraph/multimedia/archive/01395/swine-flu-treatmen_1395505c.jpg
http://clovetwo.com/archives/2009/8/23/healthnfitness/sf_05distance.jpg
http://clovetwo.com/archives/2009/8/23/healthnfitness/sf_05distance.jpg
http://clovetwo.com/archives/2009/8/23/healthnfitness/sf_05distance.jpg
http://clovetwo.com/archives/2009/8/23/healthnfitness/sf_05distance.jpg
http://clovetwo.com/archives/2009/8/23/healthnfitness/sf_05distance.jpg
http://clovetwo.com/archives/2009/8/23/healthnfitness/sf_05distance.jpg


Discrete SAIR model
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The model is given by the system of difference equations:
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Discrete SAITR model
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Final Epidemic Size
In the absence of controls we get the final size relation

(3)

with the basic reproductive number given by
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 The addition of controls replace (3) by the inequality

 Result : If        is a solution of (2) and        satisfies the 
inequality (3) then
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Optimal Control Problem
The goal is to minimize the number of infected and dead individuals with the
judicious (cost effective) use of social distancing and antiviral treatment measures over
a finite interval [ 0, Tf] . We compare three different Strategies:
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 Strategy 1 : Only Social Distancing,
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 Strategy 2 : Only Antiviral Treatment,

 Strategy 3 : Dual of Social Distancing and Treatment.
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The discrete Hamiltonian associated with problem (5) is given by:

Where and are the state and adjoint
variables.

The adjoint equations  are defined as

(6)

and the optimality conditions are:
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The adjoint equations  associated with problem (5) are:

Adjoint Equations For Strategy 3:
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The optimality conditions are:
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Algorithm: (Forward-Backward method)

 Step 1.  The initial guess  x , τ and condition y0 is selected.

 Step 2.  Solve  the state equations  (1  or  2)  forward in time. 

 Step 3.  Solve the adjoint equations (6) backward in time with the 
transversality conditions, 

 Step 4.  Solve the optimality condition  (7) .

 Step 5.  Check convergence. If                                stop; else go to Step 2.
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Numerical Results
 We present the results of selected simulations generated by 

the numerical implementation of  Strategy 1, 2 and 3.

 We compare the number of infected individuals generated 
by low  R0 (1.3 - 1.8) or high R0 (2.4 - 3.2) with no controls or 
in the presence of single or dual optimal controls. 

 A sensitivity analysis is also carried out by studying the 
robustness of our simulations in relationship to the weight 
constants and the upper bounds of controls.
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Implication of social distancing and antiviral 
treatment (moderate R0)

Figure 1: For Ro = 1.3, The optimal control solution does not
required the application of the permitted maximum values.
However, there is a strong impact in the reduction of the final
epidemic size by the application of each strategy. Strategy 3 has
the most significant reduction, almost 32%
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Figure 2: For Ro = 2.4, the optimal solution requires the
implementation of the highest permitted values for each control.
Strategy 3 produces a reduction of less than 22%. Even when there
is a maximum control implementation, the effort is not enough
and the reduction in the final epidemic size is less significant
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Implication of social distancing and antiviral 
treatment (high R0)



Figure 3: By fixing the weights B2 and B3 of each control function,
the results show that Strategy 3 yields the highest reduction of the
final epidemic size (more than 31% for small values of R0).
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Comparison of final epidemic size vs. R0



Effect of weight constants

Figure 4: In Strategy 1, the value of the weight constant B2 is
varied. For a small value of B2 the optimal solution permits the
implementation of high values of social distancing and we obtain a
high reduction in the final epidemic size (20%). For a large value of
B2 the reduction in the final epidemic size is not significant (7.5%).
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Figure 5: by increasing the cost on antiviral treatment, B3, the
optimal solution permits the application of smaller value for
treatment. We obtain an increase in the cumulative proportion of
infected cases. In contrast, when the cost is moderate the optimal
solution permits the implementation of high values of treatment
and we get a strong impact in the reduction of the final epidemic
size 30%.
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For Strategy 2:



Figure 6: The final epidemic size vs. R0 for Strategies 1 and 2 by
changing the weight constants for social distancing and antiviral
treatment. When we have a moderate cost of social distancing, there is
a reduction in the final epidemic size for every value of R0 for (A);
however, by changing B3 there is not a significant difference in the
final epidemic size . R0 > 2.5 (B).
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Final Epidemic size for Strategies 1 and 2:



The effect of upper bound on the optimal 
control

Figure 7: When the resources are limited and the upper bound is
smaller xmax = 0.07, the reduction of the final epidemic size is small
(5%).However, if the upper bound is high there is a stronger impact
in the reduction of the final epidemic size, (20%).
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Figure 8: The impact of the control in Strategy 2 is reduced when
the resources are limited. For a small upper bound, τmax = 0.007 ,
we get a small reduction of the final epidemic size 5%. When the
upper bound is τmax = 0.02, the final epidemic size is reduced by
13%.
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Upper bound for Strategy 2



Conclusions
o The use of single and dual strategies (social distancing and antiviral

treatment) results in the reduction on the cumulative number of
infected individuals.

o We compare the impact of relative costs on the effort carried out in the
implementation of each single strategy (weight constants on controls)
and also the use of limited resources (control upper bounds).

o Dual strategies have stronger impact in terms of the reduction in the
final epidemic size, but it is more cost-expensive.

o Future work: we want to include a time delay in the application of
policies
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