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With the identification of a novel coronavirus associated with the severe acute respiratory syndrome (SARS),
computational analysis of its RNA genome sequence is expected to give useful clues to help elucidate

the origin, evolution, and pathogenicity of the virus. In this paper, we study the collective counts of palin-
dromes in the SARS genome along with all the completely sequenced coronaviruses. Based on a Markov-chain
model for the genome sequence, the mean and standard deviation for the number of palindromes at or above
a given length are derived. These theoretical results are complemented by extensive simulations to provide
empirical estimates. Using a z score obtained from these mathematical and empirical means and standard
deviations, we have observed that palindromes of length four are significantly underrepresented in all the coro-
naviruses in our data set. In contrast, length-six palindromes are significantly underrepresented only in the
SARS coronavirus. Two other features are unique to the SARS sequence. First, there is a length-22 palindrome
TCTTTAACAAGCTTGTTAAAGA spanning positions 25962–25983. Second, there are two repeating length-12 palindromes
TTATAATTATAA spanning positions 22712–22723 and 22796–22807. Some further investigations into possible bio-
logical implications of these palindrome features are proposed.
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1. Introduction
In March 2003, a novel coronavirus associated with
the severe acute respiratory syndrome (SARS) was iden-
tified. The outbreak of SARS in different parts of
the world, causing hundreds of deaths, has initiated
much international effort that includes clinical, epi-
demiologic, and laboratory investigations with the
aim of controlling the spread of the virus (Bloom 2003,
Marra et al. 2003, Ruan et al. 2003, Rota et al. 2003).
Although the world was cleared of new SARS cases
by July 2003, the pursuit for a thorough understand-
ing of the origin, evolution, and pathogenicity of this
deadly virus continues.
With the availability of the complete genome

sequence of the SARS and several other coronaviruses
in public databases (e.g., GenBank), it is possible to do
a computational analysis of the viral genome, looking
for unusual genome sequence features either unique
to the SARS virus or common to the coronavirus
family. Such information can give clues to the ori-
gin, natural reservoir, and evolution of the virus. It

may contribute to the studies of the immune response
to this virus and the pathogenesis of SARS-related
disease (Rota et al. 2003).
Statistical and experimental studies of palindromes

in the other classes of viral genomes, such as the
double stranded DNA viruses, bacteriophages, retro-
viruses, etc., have been performed (Cain et al. 2001,
Dirac et al. 2002, Hill et al. 2003, Karlin et al. 1992,
Leung et al. 2002, Rocha et al. 2001, among others).
These studies have suggested that palindromes might
be involved in the viral packaging, replication,
and defense mechanisms. Unlike these well-studied
viruses involved in fatal diseases such as AIDS and
various cancers, the coronaviruses have not received
as much attention until the recent outbreak of SARS.
In the present study, we focus our attention on

palindromes in the positive-stranded RNA genomes
of coronaviruses. In accordance with GenBank con-
vention, we represent an RNA sequence as a string
of letters from the alphabet � = �A�C�G�T�. The four
letters respectively stand for the RNA bases adenine,

331



Chew, Choi, Heidner, and Leung: Palindromes in SARS and Other Coronaviruses
332 INFORMS Journal on Computing 16(4), pp. 331–340, © 2004 INFORMS

cytosine, guanine, and uracil. The letters A and T are
complementary to each other because adenine and
uracil form hydrogen bonds with each other. The
same applies to C and G. A palindrome is a symmet-
rical word such that when it is read in the reverse
direction, it is exactly the complement of itself. For
example, ACGT is a palindrome of length four. A palin-
drome is necessarily even in length because the mid-
dle base in any odd-length nucleotide string cannot
be identical to its complement.
Several points are worth noting from this initial

exploratory analysis of palindromes in the corona-
virus genome sequences: (1) The palindrome counts
in the coronavirus genomes seem lower than what
would be expected from random sequences. (2) The
SARS virus contains an exceptionally long palin-
drome with 22 nucleotide bases. This is the longest
among all palindromes observed in the coronaviruses.
(3) There are two copies of a length-12 palindrome
situated within 100 bases of each other in the
SARS genome. This is not observed in the other
coronaviruses.
Whether or not these palindrome-related features

have any biological relevance will, of course, have to
rely on careful laboratory investigations by the virol-
ogists. At this stage, however, it would be only rea-
sonable to assess whether these features can indeed
be considered statistically unusual when compared
to random-sequence models. Our observations call
for investigations into the probability distributions
of palindrome counts, lengths, and locations in a
random sequence. This paper will focus only on
the palindrome counts, leaving the others for future
studies.
In the next section, the mathematical formulas for

the theoretical mean and variance for the number
of palindromes at or above a prescribed length are
derived based on a Markov-chain random-sequence
model. Section 3 summarizes the computational
results in comparing palindrome counts of the coro-
navirus genomes to the random-sequence models.
In §4, we propose some biological questions that may
be investigated in relation to these observed nonran-
dom features. A few concluding remarks are given
in §5.

2. Palindrome Counts in
Markov-Chain Models

The main objective of this paper is to assess whether
the palindrome counts in the coronavirus genomes
are observed more (or less) frequently than expected,
under some specified probability models. We model
the genome sequence as a realization of a sequence of
random variables �1� �2� � � � � �n taking values in � =
�A�C�G�T� and n is the genome length. Throughout,
we will assume that either

(i) ��1� �2� � � � � �n� are independent and identically
distributed (M0); or
(ii) ��1� �2� � � � � �n� form a stationary Markov chain

of order one (M1).
For studying DNA words of length k, one can

choose to use Markov chains of order up to the maxi-
mum order of k− 2 as the sequence model. A higher-
order Markov chain will better fit the data sequence,
but at the same time the number of parameters in
the model increases exponentially. In this study, we
carried out some simulations using the second-order
Markov-chain model (M2). The computation takes
much longer, but the z scores obtained gave the same
interpretation as that of the M1 model. We therefore
content ourselves with the M0 and M1 models for our
analysis of palindromes of length four and above.
We are interested in deriving the mean and stan-

dard deviation of the random variable XL, total num-
ber of palindromes of length at least 2L under the M0
and M1 sequence models. This will help quantify
the extent of deviation of the observed palindrome
counts in the coronavirus genome from the expected
counts under the specified probability model. For
L≤ k ≤ n−L, define

Ik =



1 if the kth base is the left center of a

palindrome of length≥ 2L

0 otherwise
�

We say that a palindrome occurs at k when Ik = 1.
Therefore, XL = ∑n−L

k=L Ik. Note that the distribution
of Ik depends only on the joint distribution of
��k−L+1� � � � � �k+L. Under the M0 or M1 model, the
joint distribution of ��k−L+1� � � � � �k+L is independent
of k. Hence � �Ik = 1� is a constant in k. Similarly
� �Ij = 1� Ik = 1� depends only on �j −k�. Therefore, for
L≤ k ≤ n−L and 1≤ d ≤ n−L− k, we define

��0 �= � �Ik = 1� and ��d �= � �Ik = 1� Ik+d = 1��

The expressions of ��0 and ��d are crucial to cal-
culating the mean and variance of XL (see Proposi-
tion 3 below). Lemma 1 (respectively, Lemma 2) deals
with the computation of ��0 and ��d under the M1
(respectively, M0) sequence model. Indeed, we will
deduce Lemma 2 from Lemma 1.
Throughout, we use b′ to denote the complemen-

tary base of b, and w′ the inversion (i.e., the comple-
mentary word read in reverse) of the word w. There
are quite a few details to work out all the possible
overlap cases because the overlap structures depend
on the relative sizes of d (the extent of overlap) and 2L
(the cutoff length of a palindrome). However, there
are only two basic patterns in the overlap. In the
first pattern (as illustrated by Figure 1b), the shaded
segment, due to the complimentary requirement of
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palindrome Ck      2L

a c b 

      2L    palindrome Ck+d

(a) d ≥ 2L. Here the palindromes Ck and Ck+d do not overlap and c denotes
the segment between them.

palindrome Ck

       2L

w' u' u w

d w v v' w'

2L – d

palindrome Ck+d

(b) L≤ d < 2L. Here w denotes the common segment of palindromes Ck and
Ck+d . And w determines the left end and right end of Ck and Ck+d .

palindrome Ck

L

v w' w w' w w' w v' 

u' w w' w w' w w' u

           d             qd 

palindrome Ck+d
r

d

(c) 1≤ d < L with q as quotient when L is divided by d and r the remainder.
The shaded segment determines the rest of both palindromes

Figure 1 Overlapping Structures of Palindromes Ck and Ck+d for Different Values of d
Note. (a), (b), and (c) are drawn with different scales.

a palindrome, will uniquely determine the left and
right ends of Ck and Ck+d. And in the other pattern
(as illustrated by Figure 1c), the shaded segment will
determine the rest of both palindromes. In Figure 1a,
even though palindromes Ck and Ck+d do not actually
overlap (i.e., d ≥ 2L), the occurrence of a palindrome
at k will still have an effect on the probability that a
palindrome will occur at k+d under the M1 sequence
model. Lemma 1 provides expressions of ��d under
all possible situations.

Lemma 1. Suppose the genome sequence is modeled as
a stationary Markov chain of order one with stationary dis-
tribution � �= ���A���C���G���T . For a� b ∈ �
and m ≥ 1, let P�a� b and P �m�a� b respectively denote
the transition probability and the m-step transition proba-
bility from base a to base b.
(a) We have

��0= ∑
b1� ���� bL∈�

��b1P
(
bL� b′

L

) L−1∏
j=1

[
P�bj� bj+1P

(
b′

j+1� b′
j

)]
�

(1)
(b) For d ≥ 1, we have the following three cases:
(i) d ≥ 2L:

��d = ∑
1≤i≤L
ai� bi∈�

��a1P
(
aL� a′

L

)
P
(
bL� b′

L

)
P �d−2L+1(a′

1� b1
)

·
L−1∏
j=1

[
P�aj� aj+1P

(
a′

j+1� a′
j

)
P�bj� bj+1P

(
b′

j+1� b′
j

)]
�

(ii) L≤ d < 2L:

��d = ∑
b1� ���� bd∈�

�
(
b′

L

)
P
(
b′
1� b1

)
P
(
bd� b′

d

) d−1∏
j=1

P�bj� bj+1

·
L−1∏
l=1

[
P
(
b′

l+1� b′
l

)
P
(
b′

d−L+l+1� b′
d−L+l

)]
�

(iii) 1≤ d < L: we let L= qd+ r .

��d = ∑
b1�����bd∈�

Kr�d�b1�����bd

[
P
(
bd�b

′
d

)d−1∏
j=1

P
(
b′

j+1�b
′
j

)]q+1

·
[
P
(
b′
1� b1

) d−1∏
j=1

P�bj� bj+1
]q

�

where

Kr�d�b1� � � � � bd

=




��bd−r+1P
(
b′
1� b1

)∏r−1
j=1 P�bj� bj+1

·∏d−1
j=d−r+1 P�bj� bj+1 r ≥ 2

��bd−r+1P
(
b′
1� b1

)
r = 1

��b′
d/P�bd� b′

d r = 0

�

Proof. (a) Note that a palindrome of length at least
2L is of the form b1 · · · bLb

′
L · · · b′

1 where b1� � � � � bL ∈�.
Therefore,

��0= ∑
b1� ���� bL∈�

�
[
b1 · · · bLb

′
L · · · b′

1

]
�
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Because

�
[
b1 · · · bLb

′
L · · · b′

1

] = ��b1

[L−1∏
j=1

P�bj� bj+1
]

· P(bL� b′
L

)[L−1∏
j=1

P
(
b′

j+1� b′
j

)]
�

(1) follows immediately after rearranging terms.
(b) To compute the overlap probability ��d, i.e., the

probability that there are palindromes at k and k+ d,
we call the stretch of bases �k−L+1 · · ·�k+d+L the span of
palindromes Ck and Ck+d.
For (i) d ≥ 2L: The span s of the two palindromes Ck

and Ck+d is of the form acb where a= a1 · · ·aLa
′
L · · ·a′

1,
c= c1 · · · cd−2L, and b= b1 · · · bLb

′
L · · · b′

1. Hence,

��d = ∑
a� c�b

� �s�=∑
a�b

∑
c

� �a��
[
cb1 � a′

1

]
� �b � b1�

= ∑
a�b

� �a�P �d−2L+1�a′
1� b1� �b � b1��

Hence (i) follows immediately from

� �a�=��a1

[L−1∏
j=1

P�aj� aj+1
]
P
(
aL� a′

L

)[L−1∏
j=1

P
(
a′

j+1� a′
j

)]
%

and

� �b � b1�=
[L−1∏

j=1
P�bj� bj+1

]
P
(
bL� b′

L

)[L−1∏
j=1

P
(
b′

j+1� b′
j

)]
�

For (ii) L ≤ d < 2L: Refer to Figure 1(b), let w =
bd−L+1 · · · bL denote the common segment of palin-
dromes Ck and Ck+d. Assuming d > L, let u= b1 · · · bd−L

and v= bL+1 · · · bd; we can represent Ck =w′u′uw and
Ck+d =wvv′w′ where b1� � � � � bd ∈�. Therefore,

��d = ∑
b1� ���� bd∈�

� �w′u′uwvv′w′�

= ∑
b1� ���� bd∈�

�
[
b′

L · · · b′
1b1 · · · bdb

′
d · · · b′

d−L+1
]
�

Writing it out in terms of the initial distribution and
transition probabilities, we have proved (ii) for d > L.
The case for d = L is similar: Take u and v as null
words and proceed as in the case d > L.
To prove (iii), we consider the case r ≥ 1 first.

This time, let w = b1 · · · bd denote the first d bases to
the right of the center of Ck and to the left of the
center of Ck+d. Let u = b1 · · · br and v = bd−r+1 · · · bd,
respectively denote the first and last r bases of w.
Figure 1(c) displays the necessary structure in Ck and
Ck+d for both of them to be palindromes when q = 3.
If q is odd, then the span of Ck and Ck+d is of the

form vw′w︸︷︷︸
1

· · ·w′w︸︷︷︸
q

w′u. Therefore,

��d = ∑
b1� ���� bd∈�

�
[
bd−r+1 · · · bd b′

d · · · b′
1b1 · · · bd︸ ︷︷ ︸
1

· · ·

b′
d · · · b′

1b1 · · · bd︸ ︷︷ ︸
q

b′
d · · · b′

1b1 · · · br

]
� (2)

If q is even, then the span of Ck and Ck+d is changed
accordingly to the form u′ww′︸︷︷︸

1

· · ·ww′︸︷︷︸
q

wv′ and

��d = ∑
b1� ���� bd∈�

�
[
b′

r · · · b′
1 b1 · · · bdb

′
d · · · b′

1︸ ︷︷ ︸
1

· · ·

b1 · · · bdb
′
d · · · b′

1︸ ︷︷ ︸
q

b1 · · · bdb
′
d · · · b′

d−r+1
]
� (3)

By making the one-to-one transformation in the sum-
mation, b1 → b′

d� � � � � bd → b′
1, and we can see that both

sums on the RHS of (2) and (3) are the same. So with-
out loss of generality, we compute ��d under the
assumption that q is odd. The crucial step is then to
calculate the probability of the span of Ck and Ck+d,
and part (iii) will follow immediately from summing
over all possible b1� � � � � bd. We first consider r ≥ 2,
then

�
[
bd−r+1 · · · bd b′

d · · · b′
1b1 · · · bd︸ ︷︷ ︸
1

· · ·

b′
d · · · b′

1b1 · · · bd︸ ︷︷ ︸
q

b′
d · · · b′

1b1 · · · br

]

=��bd−r+1P
(
b′
1� b1

)[r−1∏
j=1

P�bj� bj+1
]

·
[ d−1∏

j=d−r+1
P�bj� bj+1

][
P
(
bd� b′

d

) d−1∏
j=1

P
(
b′

j+1� b′
j

)]q+1

·
[
P
(
b′
1� b1

) d−1∏
j=1

P�bj� bj+1
]q

� (4)

For r = 1, (4) becomes

�
[
bd b′

d · · · b′
1b1 · · · bd︸ ︷︷ ︸
1

· · · b′
d · · · b′

1b1 · · · bd︸ ︷︷ ︸
q

b′
d · · · b′

1b1
]

=��bdP
(
b′
1� b1

)[
P
(
bd� b′

d

) d−1∏
j=1

P
(
b′

j+1� b′
j

)]q+1

·
[
P
(
b′
1� b1

) d−1∏
j=1

P�bj� bj+1
]q

�

If r = 0, reasoning similar to the above leads us to
consider just the case q is odd. However, the span
of Ck and Ck+d becomes (one can take u and v as
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empty words) w′w︸︷︷︸
1

· · ·w′w︸︷︷︸
q

w′. And hence,

�
[
b′

d ···b′
1b1 ···bd︸ ︷︷ ︸
1

···b′
d ···b′

1b1 ···bd︸ ︷︷ ︸
q

b′
d ···b′

1

]

= ��b′
d

P
(
bd� b′

d

)
[
P
(
bd� b′

d

) d−1∏
j=1

P
(
b′

j+1� b′
j

)]q+1

·
[
P
(
b′
1� b1

) d−1∏
j=1

P�bj� bj+1
]q

� �

Under the M0 model, the stationary distribution
� = �pA�pC�pG�pT , and the transition probabilities
P�a� b = pb and P �m�a� b = pb for any a� b ∈�, m≥ 1.
Substituting these into Lemma 1(a) and (i) and (ii) of
Lemma 1(b) immediately gives us the corresponding
parts in Lemma 2 below. Part (iii) of Lemma 1(b) can
be simplified further according to how big the remain-
der r is in relation to d. We shall omit the details. In
this way, we have deduced the following Lemma 2,
which was first proved in Leung et al. (2002).

Lemma 2. Suppose the genome sequence is modeled
as M0 and let

( �= 2�pApT + pCpG�

(a) We have
��0= (L�

(b) For d ≥ 1, we have the following four cases:
(i) d ≥ 2L:

��d= (2L%

(ii) L≤ d < 2L:

��d= (2�d−L�pApT �pA + pT + pCpG�pC + pG�2L−d%

when 1 ≤ d < L we let L = qd + r where 0 ≤ r < d, and
consider two subcases according to how big the remainder r
is in relation to d.

(iii) 1≤ d < L and 0≤ r < �d+ 1/2:

��d = [
2
(
�pApT q+1+ �pCpGq+1)]2r

· [�pApT q�pA + pT + �pCpGq�pC + pG
]d−2r

%

(iv) 1≤ d < L and �d+ 1/2≤ r < d:

��d = [
2
(
�pApT q+1+ �pCpGq+1)]2�d−r

· [�pApT q+1�pA + pT + �pCpGq+1�pC + pG
]2r−d

�

Proposition 3. With the Ik’s as defined at the begin-
ning of §2, the total number of palindromes of length
at least 2L is given by XL �=∑n−L

k=L Ik. And hence,

)L �= E�XL= �n− 2L+ 1��0

and

+2
L �= Var�XL= �n− 2L+ 1��0�1−��0

+ 2
n−2L∑
d=1

�n− 2L+ 1− d���d−��02��

where ��0 and ��d are given as in Lemma 2 under
the M0 sequence model, and Lemma 1 under M1 sequence
model.

Proof. The first equation follows immediately from
taking expectations on both sides of XL �=∑n−L

k=L Ik, and

+2
L =

n−L∑
j=L

Var�Ij + 2
n−L−1∑

j=L

n−L∑
k=j+1

Cov�Ij� Ik

= �n− 2L+ 1��0�1−��0

+ 2
n−L−1∑

j=L

n−L−j∑
d=1

[
� �Ij = 1� Ij+d = 1�−��02

]

= �n− 2L+ 1��0�1−��0

+ 2
n−2L∑
d=1

�n− 2L+ 1− d���d−��02�� �

3. Palindrome Counts in
Coronaviruses

The derived means and variances under the M0
and M1 sequence models enable us to assess whether
the observed palindrome count in a genome is too
abundant or rare. The z score defined in (5) below is a
modification of a generally accepted measure of over
(or under)representation of a DNA word. For L≥ 2, a
standardized frequency under the assumption of the
M1 sequence model is defined as

zM1 =
XL −,M1

+M1
� (5)

where XL is the observed number of palindromes
of length at least 2L, and ,M1 and +M1 denote its
expected value and standard deviation, respectively.
(For simplicity, we do not indicate the dependence
of , and + on L.) The corresponding z score is defined
similarly for the M0 sequence model. When L is small
compared with the genome length n, XL is a sum
of weakly dependent random indicators Ik and it is
therefore well approximated by a normal distribution.
Indeed, if we let X

�j
L denote the number of occur-

rences of the jth palindrome in the genome, then
the count vector �X

�1
L �X

�2
L � � � � �X

�4L
L  will converge

to a multivariate normal distribution as n → � (see
Theorem 12.5 in Waterman 1995). And hence XL =∑

1≤j≤4L X
�j
L will converge to a normal distribution as

n → �. For L = 2 or 3, and n in the range 30,000,
we expect that the distribution of the z scores will
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Figure 2 Normal Q-Q Plots of Counts of Palindromes of Length Four
(Top) and Six (Bottom) in the 1,000 Random Sequences
Under the M1 Model for the SARS Genome

be approximately standard normal. The near-straight
lines in the Q-Q plots in Figure 2 confirmed that
this is the case. This motivates our definition: The
count is said to be over (or under)represented, if the z
score is greater than 1�645 or less than −1�645, respec-
tively (i.e., in the upper or lower 5% of a standard
normal distribution, as commonly used in one-tailed
hypothesis tests in biological experiments). However,
it should be emphasized that these cutoff z score val-
ues can only be considered as a convenient statistical
guideline to help bring out interesting observations

Table 1 List of Seven Coronaviruses and Four Other RNA Viruses to be Analyzed

Name Abbrev. Accession Length Base composition

SARS coronavirus Urbani SARS AY278741 29�727 (0.28, 0.20, 0.21, 0.31)
Avian infectious bronchitis virus AIBV NC_001451.1 27�608 (0.29, 0.16, 0.22, 0.33)
Bovine coronavirus BCoV NC_003045.1 31�028 (0.27, 0.15, 0.22, 0.36)
Human coronavirus 229E HCoV NC_002645.1 27�317 (0.27, 0.17, 0.22, 0.35)
Murine hepatitis virus MHV NC_001846 31�357 (0.26, 0.18, 0.24, 0.32)
Porcine epidemic diarrhea virus PEDV NC_003436.1 28�033 (0.25, 0.19, 0.23, 0.33)
Transmissible gastroenteritis virus TGV NC_002306.2 28�586 (0.29, 0.17, 0.21, 0.33)

Rubella virus RUV NC_001545.1 9�755 (0.15, 0.39, 0.31, 0.15)
Equine arteritis virus EAV NC_002532.2 12�704 (0.21, 0.26, 0.26, 0.27)
Rabies virus RV NC_001542.1 11�932 (0.29, 0.22, 0.23, 0.26)
Human immunodeficiency virus 1 HIV-1 NC_001802.1 9�181 (0.36, 0.18, 0.24, 0.22)

rather than a strict criterion to lead to a definitive
conclusion.
We compute the z scores of the genomes in the fol-

lowing data set: It is composed of seven coronaviruses
with complete genome sequences and four other
RNA viruses. For some coronaviruses, the genome
sequences of multiple strains of the same virus are
available. Only one strain is included in our data
set because their genomes are very similar. Four
other RNA viruses outside the coronavirus family are
included in the data set. Two of these (the rubella
virus and the equine arteritis virus) have positive-
stranded RNA genomes like the coronaviruses, one
(rabies virus) has a negative-stranded RNA genome,
and the remaining one (HIV) is a retrovirus. Table 1
lists the names of the viruses, abbreviations, GenBank
accession numbers, genome lengths, and base compo-
sitions of the seven coronaviruses and the other four
RNA viruses. Table 2 displays the z scores for counts
of palindromes of length four and above under the
M0 and M1 models.
Table 2 indicates that there is a general avoidance

of palindromes of length four and above in the coro-
navirus genomes. A natural question that follows is
whether palindromes of a given exact length are also
underrepresented in these viruses.
To answer this question, one would need the

mean - and standard deviation . for the count YL of
palindromes of exact length 2L. It is easy to obtain
the mean because - = E�YL = E�XL − E�XL+1. The
standard deviation of YL can be derived with suit-
able modification of the method of proofs in Lem-
mas 1 and 2, but the expression obtained is rather
lengthy due to an increase in the overlapping struc-
tures. Instead, we adopt an alternative approach to
estimate the standard deviation by simulation, which
at the same time serves to validate our derived means
and standard deviations. This approach has a fur-
ther advantage of giving us the empirical distribu-
tions, and Figure 2 shows that for small values of L,
the distributions are well approximated by normal
distributions.
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Table 2 z Scores for Counts of Palindromes of Length Four and Above

Virus Counts �M0 ��M0	 �M1 ��M1	 zM0 zM1

SARS 1�554 1�981
0 �43
4	 1�687
6 �40
3	 −9
83 −3
32
AIBV 1�578 1�896
6 �42
8	 1�675
3 �38
2	 −7
45 −2
54
BCoV 1�886 2�115
6 �45
4	 2�007
5 �45
5	 −5
06 −2
67
HCoV 1�451 1�843
6 �42
2	 1�567
6 �37
0	 −9
30 −3
15
MHV 1�793 2�006
6 �43
8	 1�911
3 �41
4	 −4
88 −2
86
PEDV 1�457 1�781
6 �41
2	 1�578
8 �38
3	 −7
87 −3
18
TGV 1�610 1�993
9 �43
8	 1�695
6 �38
9	 −8
76 −2
20

RUV 868 793
2 �28
0	 845
6 �28
3	 2
67 0
79
EAV 672 784
3 �27
2	 710
4 �25
8	 −4
13 −1
49
RV 559 758
0 �26
7	 564
3 �23
0	 −7
45 −0
23
HIV-1 475 551
9 �23
1	 480
2 �21
9	 −3
33 −0
24

For each virus in Table 1, 1,000 random sequences
were generated for both the M0 and M1 models
using scripts written in the R language (http://www.
r-project.org/). The sequences are run through the
palindrome program which is part of EMBOSS
(European Molecular Biology Open Software Suite,
Rice et al. 2000) to extract the palindrome positions
and length. Each output is then read by R again
and the counts of palindromes of various length are
tabulated.
Tables 3 and 4 present the counts of palindromes

of exact length four, six, and eight, along with their
expected values -, estimated standard deviations .̂ ,
and z scores. Based on the z scores, Tables 3 and 4
indicate that length-four palindromes are significantly
underrepresented across the coronavirus family under
both the M0 and M1 sequence models. However, for
length-six palindromes, SARS is the only member of
the coronavirus family that shows underrepresenta-
tion under the M1 sequence model. For length eight
or above, no distinct patterns are observed.
For palindromes of length four and above, it is pos-

sible to fit higher-order Markov models to the genome
sequence. For example, the second-order Markov-
chain model that takes the base, dinucleotide, as well
as trinucleotide composition into account, can be used

Table 3 z Scores for Palindromes of Various Lengths Under the M0 Model

Length-four palindromes Length-six palindromes Length-eight palindromes

Counts �M0 ��̂M0	 zM0 Counts �M0 ��̂M0	 zM0 Counts �M0 ��̂M0	 zM0

SARS 1�144 1�469
6 �36
9	 −8
82 284 379
4 �19
4	 −4
92 90 97
9 �9
7	 −0
82
AIBV 1�142 1�399
5 �37
5	 −6
87 320 366
8 �18
6	 −2
52 91 96
1 �9
9	 −0
52
BCoV 1�360 1�563
2 �40
4	 −5
03 389 408
2 �20
4	 −0
94 98 106
6 �10
7	 −0
80
HCoV 1�054 1�364
7 �36
9	 −8
42 287 354
5 �18
9	 −3
57 82 92
1 �9
8	 −1
03
MHV 1�328 1�499
0 �38
0	 −4
50 340 379
2 �19
5	 −2
01 82 95
9 �9
9	 −1
41
PEDV 1�079 1�332
5 �36
5	 −6
94 274 335
9 �18
5	 −3
35 79 84
7 �9
2	 −0
62
TGV 1�180 1�467
3 �38
4	 −7
48 306 387
5 �19
7	 −4
14 85 102
3 �9
8	 −1
77

RUV 610 567
0 �22
8	 1
89 167 161
7 �12
6	 0
42 68 46
1 �6
9	 3
17
EAV 479 589
4 �23
8	 −4
64 145 146
4 �12
3	 −0
12 36 36
4 �6
1	 −0
06
RV 407 567
0 �23
7	 −6
75 102 142
9 �12
4	 −3
30 38 36
0 �5
9	 0
34
HIV-1 347 416
6 �20
1	 −3
46 89 102
1 �10
2	 −1
29 34 25
0 �4
8	 1
87

to calculate the z scores. We simulated 1,000 random
sequences with the M2 model, but the results did not
differ much from the M1 model.
As the EMBOSS palindrome program provides us

with a detailed listing of all occurrences of palin-
dromes of length four and above, we are able to
notice two unique features in SARS. First, the SARS
sequence contains a long palindrome of length 22, the
longest among all palindromes observed in the coro-
naviruses. Second, there are two identical, length-12
palindromes situated within 100 bases of each other
in the SARS genome. These are not observed in the
other coronaviruses. Although contributing little to
the total palindrome counts, these three palindromes
appear unusual enough to warrant further study of
their possible biological roles, as discussed in the next
section.

4. Discussion
Various statistical assessments of unusual abundance
and rarity of individual words, including individ-
ual palindromes, in nucleotide sequences have been
done using random-sequence models in a number of
previous studies (Karlin et al. 1992; Merkl and Fritz
1996; Rocha et al. 1998, 2001; Schbath et al. 1995, to
name just a few). The present study, however, aims
at investigating the unusual abundance and rarity of
palindromes collectively rather than individually. The
mathematical results in §2 provide a directly com-
putable formula to give a single z score for all palin-
dromes with a given minimal length. We hope the
exploratory results in this paper will serve as a basis
for more detailed investigations to see how palin-
dromes might be involved in important biological
mechanisms of the coronaviruses.
There are two random sequence models M0 and M1

used in this paper. Because M1 can take the genome
dinucleotide compositions into consideration while
M0 cannot, M1 is preferred over M0. Comparatively,
the z scores under M1 are less extreme than those
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Table 4 z Scores for Palindromes of Various Lengths Under the M1 Model

Length-four palindromes Length-six palindromes Length-eight palindromes

Counts �M1 ��̂M1	 zM1 Counts �M1 ��̂M1	 zM1 Counts �M1 ��̂M1	 zM1

SARS 1�144 1�242
7 �33
4	 −2
96 284 327
3 �18
0	 −2
41 90 86
5 �9
4	 0
37
AIBV 1�142 1�229
8 �35
4	 −2
48 320 326
9 �17
8	 −0
39 91 87
0 �9
4	 0
42
BCoV 1�360 1�476
5 �37
2	 −3
13 389 390
4 �19
5	 −0
07 98 103
4 �9
8	 −0
55
HCoV 1�054 1�146
9 �34
5	 −2
69 287 307
6 �17
4	 −1
18 82 82
7 �8
9	 −0
08
MHV 1�328 1�421
3 �37
8	 −2
47 340 364
3 �18
8	 −1
29 82 93
5 �9
8	 −1
17
PEDV 1�079 1�169
8 �34
5	 −2
63 274 302
9 �17
5	 −1
65 79 78
6 �9
1	 0
05
TGV 1�180 1�239
5 �34
0	 −1
75 306 333
2 �18
4	 −1
48 85 89
8 �9
7	 −0
49

RUV 610 604
3 �24
5	 0
23 167 172
5 �13
8	 −0
40 68 49
2 �6
9	 2
72
EAV 479 529
6 �22
5	 −2
25 145 134
8 �11
3	 0
91 36 34
3 �5
7	 0
30
RV 407 415
2 �19
1	 −0
43 102 109
8 �10
4	 −0
75 38 28
9 �5
3	 1
71
HIV-1 347 358
3 �18
7	 −0
60 89 91
0 �9
6	 −0
21 34 23
1 �4
5	 2
42

of M0. M1 is therefore more conservative in declaring
the palindrome counts in a genome to be significantly
different from those in random sequences. We shall
base our discussion of the results on M1 whenever
possible.
The counts of palindromes of length at least four

in each coronavirus analyzed are significantly lower
than expected (see Table 2). As the palindrome length
increases to six and above, the underrepresentation
of palindromes no longer holds across the family
(theoretical z scores under M1 range from −1�66
to 0.46). This suggests that there is a family-wide
avoidance of palindromes of exact length four in the
coronaviruses, which is confirmed by the empirical z
scores for exact-length palindromes in Tables 3 and 4.
With this knowledge, a thorough examination of the
relative abundance of individual length-four palin-
dromes, conditional on the total length-four palin-
drome count is called for. We are in the process of
setting up such a study.
Although the underrepresentation of length-four

palindromes is observed for all of the coronaviruses
in our data set that include members from all three
antigenic groups (Marra et al. 2003), this underrepre-
sentation is not universally true in all RNA viruses,
as demonstrated by the other RNA viruses outside
the coronavirus family. While it is conceivable that
palindrome underrepresentation is just a characteris-
tic of the common ancestor of the coronaviruses, it
is worth noting that the characteristic is preserved in
the family despite the reputation for RNA viruses to
be nature’s swiftest evolvers (Worobey and Holmes
1999). So far, we cannot find any previous report
of underrepresentation of short palindromes in RNA
viruses with eukaryotic hosts. However, avoidance of
short palindromes in some bacterial and phage DNA
genomes has been reported in several studies (Karlin
et al. 1992; Merkl and Fritz 1996; Rocha et al. 1998,
2001, among others). The phenomenon is generally
explained in relation to the defense mechanisms of the

bacterial and phage genomes, protecting themselves
against being destroyed by restriction enzymes capa-
ble of cutting up DNA molecules at certain palin-
dromic sites. It will be interesting to investigate
whether there is any possible interaction of the short
palindromes in the coronavirus genomes with the
immune system of the host cells that might have
detrimental effects on the survival of the virus.
Length-six palindromes are found significantly

underrepresented only in SARS but not in the other
six coronaviruses (see Table 4). Would this avoidance
of length-six palindromes in the SARS genome offer
a protective effect on the virus, making it compara-
tively more difficult to be destroyed and contributing
to the rapid spread and the severity of the disease?
This will be an interesting point to observe as we seek
to learn more about the SARS virus.
Among all palindromes found in the seven coro-

naviruses genomes we analyzed, the longest one
resides in SARS. It is composed of the 22 bases
TCTTTAACAAGCTTGTTAAAGA spanning positions 25962–
25983. Because the probability distribution of palin-
drome lengths has not been rigorously obtained, we
can only attempt a rough estimation, based on the
simple M0 sequence model, of observing a length-22
palindrome in a genome with base composition like
that of SARS. It has been demonstrated in Leung
et al. (2002) that for larger values of L (say ≥5), we
may approximate the counts of palindromes at or
above length 2L by a Poisson random variable with
parameter ) equal to the expected count. We therefore
have � �maximal palindrome length≥ 22�= � �X11 ≥ 1�,
which can be approximated by the corresponding
Poisson probability with )11 = E�X11 = 0�01008 by
Proposition 3. This Poisson probability is equal to
1− e−)11 , about 1%.
Knowing that this long palindrome is quite unlikely

to occur by chance, one would logically ask the ques-
tion of whether it plays any particular functional role.
According to the classification of open reading frames
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(ORFs) encoding potential nonstructural proteins of
the SARS virus (Rota et al. 2003, Table 1), this palin-
drome occurs in the overlapping region of the two
ORFs designated X1 and X2. Due to the location
of this palindrome, it is tempting to speculate that
it might be involved in some secondary structures
serving similar purposes like those of a pseudoknot,
which is typically found at frame-shift locations in
overlapping coding sequences (Giedroc et al. 2000).
One would have to perform a detailed secondary
structure prediction on this part of the SARS and
other coronavirus genomes before further suggestions
can be made. The methods and tools used by Qin
et al. (2003) to predict the secondary structure in
another part of the SARS virus genome (around the
packaging-signal sequence) are likely to be applicable
here as well.
Another feature unique to SARS is the occurrence

of two repeating length-12 palindromes TTATAATTATAA
spanning positions 22712–22723 and 22796–22807,
all within 100 bases of the genome in the coding
sequence of the surface-spike glycoprotein, which is
important for virus entry and virus-receptor interac-
tions (Yu et al. 2003). Both copies begin on the third
position of a codon. Three amino acids Tyr-Asn-Tyr
are coded by the second through tenth bases of
the palindrome. No such repeating palindromes are
observed in the corresponding glycoprotein-coding
sequences for any of the other six coronaviruses. Prob-
abilistic assessment of close repeating palindromes
occurring in random sequences has yet to be formu-
lated mathematically or estimated by simulation. (The
method of Robin and Daudin 1999 can be used to
assess the probability that a given palindrome repeats
itself in close proximity.) If such an observation is
found to be unlikely to occur by chance, then these
repeating palindromes might be tested for potential
regulatory functions. Large palindromes present in
single-stranded RNA have the inherent ability to form
double-stranded stem structures through the forma-
tion of intramolecular base pairs; thus, it is possible
that these sequences form secondary RNA structures
in the genomic RNA and in one or more subgenomic
RNAs of the SARS virus. In many of the single-
stranded RNA viruses, stem structures play important
regulatory roles in genome replication or gene expres-
sion. It should be possible to investigate potential
regulatory roles of these repeated length-12 palin-
dromes by engineering silent mutations within these
sequences such that the encoded protein is not altered
but the palindromes and putative secondary struc-
tures are lost.

5. Concluding Remarks
While we hope that there will never be another out-
break of SARS, we believe that detailed analysis of

the SARS genome sequence can help generate useful
information for understanding the biology of the
coronaviruses and perhaps other RNA viruses in gen-
eral. This first exploration about palindromes in the
coronavirus family generates many questions to be
investigated in greater detail mathematically, compu-
tationally, as well as biologically.
Closely related to palindromes is the sequence fea-

ture of close inversion, which is a palindrome with
its two halves separated by a short stretch of inter-
vening nucleotides. These close inversions are well
known to form stem-loop and other secondary struc-
tures involved in the viral recombination and pack-
aging process (Rowe et al. 1997, Qin et al. 2003).
We anticipate that a set of interesting and challeng-
ing questions in random-sequence models will again
emerge from the analysis of close inversions.
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