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Act I

Setting the scene: Trees from flow diagrams



Metric holomorphic polynomial field with simple zeros

Phase portrait of X (z) = 2i − iz − 2iz4 + iz5 ∂
∂z
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Complex rotation

Phase portrait of X (z)(12 − i)



Complex rotation

Phase portrait of X (z)(−1 + i
2)



Put it all together, and get a graph



Trees

So we are looking at unlabeled trees with black and white vertices

I no white vertices are adjacent to each other

I each white vertex is adjacent to at least three black vertices

I no restriction on neighbors of black vertices

We want to count such trees up to rotation (but not reflection)

Example

The first two are the same, but the third is different.
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Act II

Flashback: Counting (unlabeled) trees



How to grow different kinds of rooted trees, recursively

I Rooted trees:
I A = X · E (A),
I E stands for “set of”

I Ordered rooted tree:
I AL = X · L(AL)
I L stands for “linear order”

I Planar rooted trees:
I P = X + X · C (AL)
I C stands for “cyclic order”

Example



Unrooting I: Center of tree

Definition
Center of a tree is the set of vertices v that minimize

max
u

d(u, v)

It is always either a single vertex, or an edge.

So this naturally
roots a tree at either a vertex or an edge.

Example
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Unrooting II: Dissymmetry theorem

Theorem (Dissymmetry)

A+ E2(A) = a +A2,

where a denotes unrooted trees and E2 is the species of sets with
exactly two elements.

Proof.
(Sketch) LHS is trees rooted at a vertex or an edge. RHS is trees
(unrooted) or ordered pair of rooted trees. So we need
isomorphism between trees rooted at vertex or edge other than the
center, with ordered pairs of rooted trees.

←→
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Quick note about unlabeling

Theorem (Dissymmetry)

A+ E2(A) = a +A2,

where a denotes unrooted trees and E2 is the species of sets with
exactly two elements.

Dissymmetry theorem allows us to count unrooted, but still labeled
trees. To unlabel the trees, we need “cycle index series”.



Act III

Return to the present day: Counting our trees



Black and white vertices, not at the root

Similar to ordered rooted trees, but now color-aware

Y1 = X1 · L(Y1 + Y2) Y2 = X2 · L≥2(X1 · L(Y1 + Y2))

Y3 = Y1 + Y2 = X1 · L(Y3) + X2 · L≥2(X1 · L(Y3))



Recursive equation

Y3 = Y1 + Y2 = X1 · L(Y3) + X2 · L≥2(X1 · L(Y3))

y3 = x1` + x2
(x1`)

2

1− (x1`)

where ` = 1
1−y3

.

Simplifying,

x1 + x21 (x2 − 1)− (y3 − 1)2y3 − x1y
2
3 = 0.

Unique real root y3(x1, x2) =
2−x1

3 +(21/3(−1+4x1−x12))(
3

(
2−12x1+15x12+2x13−27x12x2+

√
(4(−1+4x1−x12)3+(2−12x1+15x12+2x13−27x12x2)2)

)1/3
)

− 1

3 21/3

(
2 − 12x1 + 15x12 + 2x13 − 27x12x2 +

√(
4
(
−1 + 4x1 − x12

)3 +
(
2 − 12x1 + 15x12 + 2x13 − 27x12x2

)2))1/3
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Dissymmetry again

Recall
A+ E2(A) = a +A2,

The same arguments apply. But now, paying attention to color,

AR = (X1 · (1 + C (Y3))) + (X2 · C≥3(X1 · L(Y3)))

E2(AR) = E2(Y1) + Y2 · Y1 = E2(Y3)− E2(Y2)

A2
R = Y 2

1 + 2Y1Y2 = Y 2
3 − Y 2

2

This can be stated more generally for “multi-sort” species.
(And then, to remove labels, again bring in cycle index series.)
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Act IV

Aftermath: Data and Specializations



Data

1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 1 2 3 6 14 34 95 280 854 2694
1 0 0 1 2 5 16 48 164 559 1952 6872 24520
2 0 0 0 0 1 5 30 146 693 3108 13608 58200
3 0 0 0 0 0 0 2 20 175 1254 7752 44112
4 0 0 0 0 0 0 0 0 7 95 1125 10108
5 0 0 0 0 0 0 0 0 0 0 19 480
6 0 0 0 0 0 0 0 0 0 0 0 0

No white vertices:
Unlabeled plane trees.

Minimal black vertices:
Unlabeled 3-gonal cacti with n triangles.
(Bóna, Bousquet, Labelle, Leroux, 2000)
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One white vertex

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 1 2 5 16 48 164 559 1952 6872 24520
Triangulations of an n-gon with exactly one internal vertex.
(Brown, 1964)

Both are circular orders of (at least three) Catalan-things (ordered
rooted trees or rooted triangulations).
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