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Definitions and motivation
Examples

More theory

Fractions
Geometry
Real life

One reason fractions are hard

2

3
+

1

5
=

10

15
+

3

15
=

13

15

We have to use 2
3 = 10

15 and 1
5 = 3

15 .
Questions:

I If 2
3 and 10

15 are equal, why can we use one but not the other?

I Could we have used something else besides 10
15 ?

I Would we use something else in another situation, or should
we always use 10

15 ?
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Definitions and motivation
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More theory

Fractions
Geometry
Real life

Equivalent fractions

Definition: a
b ∼

c
d if they reduce to the same fraction (ad = bc).

It’s easy to check ∼ is an equivalence relation, so we can partition
fractions as follows:

a
b and c

d are in the same part (“equivalence class”) if a
b ∼

c
d .

1
2

17
34

2
3

10
15

1
5

3
15

4
7

20
35

4
8

6
12

4
6

14
21

10
50

8
40

40
70

16
28

10
20

7
14

20
20

8
12

2
10

7
35

8
14

36
63
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Definitions and motivation
Examples

More theory

Fractions
Geometry
Real life

Adding fractions (revisited)

if a
b ∼

c
d

and e
f ∼

g
h

then a
b + e

f ∼
c
d + g

h

So, really we should say[
2

3

]
+

[
1

5

]
=

[
13

15

]
,

because anything equivalent to 2
3 plus anything equivalent to 1

5
“equals” something equivalent to 13

15 .

I But it’s hard to compute unless we pick the right
representative.

I In other settings, we stick to the fraction in lowest terms, a
distinguished representative.
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Fractions
Geometry
Real life

Similarity, congruence, etc.

Some equivalence relations from geometry:

I Similarity
I same “shape”, possibly different size
I can get via dilation, reflection, rotation, translation

I Congruence
I same “shape”, size
I can get via reflection, rotation, translation

I Same shape, size, chirality
I can get via rotation, translation

I Same shape, size, chirality, orientation
I can get via translation

I Same shape, size, chirality, orientation, position
I equality
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Definitions and motivation
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Fractions
Geometry
Real life

Finer partitions

I As we go down that ladder, we refine the partition, by
splitting each part into more parts.

I Different situations call for different interpretations of when
two shapes are “the same”.
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More theory

Fractions
Geometry
Real life

Money

I At the store, 1 dollar equals 4 quarters equals 10 dimes.

I At old vending machines, dollar bad, coins good.

I At my vending machine, dollar good, coins bad.

I At parking meters, quarters good, everything else bad.

I Everywhere, pennies bad.
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Fractions, again

When is 2
6 not the same as 1

3 ?

I When it’s apple pie.

I When it’s apple pie, and you have two kids and no knife.
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Elementary
High school
College

Where else do we see this?

Glad you asked
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Elementary
High school
College

Regrouping

To do multidigit addition and subtraction,

436 = 400 + 30 + 6 = 400 + 20 + 16 = 300 + 130 + 6 = · · ·

I Different representations are better or worse for different
addition and subtraction problems.

I Using base-10 blocks, these all make different (but
“equivalent”) pictures.
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Elementary
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College

“Unique” factorization

Completely factor 60, as

2× 2× 3× 5 = 2× 3× 2× 5 = 5× 2× 2× 3 = · · ·

I Natural to say these are all the “same”; once we do, we get
unique factorization into primes.

I Distinguished representative is usually to arrange primes from
smallest to largest.

I In context of factorization, 6× 10 and 4× 15 are different,
even though usually 6× 10 = 4× 15.
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Elementary
High school
College

0.999 . . .

0.999 . . . = 1

right?

I 0.999 . . . isn’t even a number, it’s an infinite process that gets
arbitrarily close to 1

I “gets arbitrarily close to” is an equivalence relation.

I This equivalence relation respects addition, multiplication,
etc. (like equivalent fractions).

I So it’s close enough for everything we do.

I And allowing it (and all its infinite process buddies) allows us
to say things like

√
2 and e are numbers, on the number line.
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Elementary
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College

Algebraic expressions

(x − 1)(x + 1) = x2 − 1

right?

I The two expressions are equal for all values of x .

I Being equal for all values of [all relevant variables] is an
equivalence relation.

I This equivalence relation respects addition, multiplication,
etc. (like equivalent fractions).

I So it’s good enough for everything we do.

I But it is not so obvious when expressions are equivalent.

I There are many different ideas of “distinguished
representative”.
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I But it is not so obvious when expressions are equivalent.

I There are many different ideas of “distinguished
representative”.
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Algebraic equations

3x + 7 = 22 is the same as 3x = 15,

right?

I The two equations have the same solution set for x .

I Having the same solution set for [all relevant variables] is an
equivalence relation.

I The algebraic manipulations we do when solving equations
should take us from equations only to equivalent equations.
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Elementary Probability (combinations and permutations)
When you ask “How many ways can we pick 6 of these 54
numbers?” [Texas Lotto], we mean {17, 23, 42, 10, 54, 1} is the
same as {10, 23, 54, 17, 42, 1},

right?

I With combinations (like this), order does not matter, so it’s
an equivalence relation on ordered lists (permutations).

I Thinking of combinations as an equivalence relation on
permutations allows us to get counting formula for
combinations.

I To present a combination, we need to pick some way of
writing it down (a permutation), a representative of its
equivalence class.

I Usually, the distinguished representative (ordered list) to
represent a combination (unordered list) is to put the items
“in order”; for instance: {1, 10, 17, 23, 42, 54}.
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Vectors

I To draw a vector in the plane, we need to pick a starting
point and ending point for the arrow.

I But translating that arrow does not change the vector.

I So we can think of a vector as an equivalence class of arrows;
two arrows are equivalent if they have the same direction and
magnitude.

I Distinguished representative is often to start at the origin.
But to see how to add two vectors, we should move the
starting point of the second one.

I This equivalence relation respects vector addition and scalar
multiplication.
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Modular arithmetic

I Two numbers are equivalent if they give the same remainder
after dividing by m.

I Example: Even and odd (m = 2).

I This equivalence relation respects addition and multiplication.

I Example: Last digit arithmetic (m = 10).
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Anti-differentiation

Solve
f ′(x) = 3x2

I “Answer” is x3 + C .

I This really means the equivalence class of functions that can
be written in this form.

I The equivalence relation is f ∼ g if f − g is a constant.

I This equivalence relation respects addition, multiplication by a
constant, which is why those are easy to deal with in
anti-differentiation.
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Linear Differential equations
Solve

y ′′′ − 5y ′′ + y ′ − y = 3x2

I Solutions of the form

y = y0 + yp

where y0 is the general solution to the homogeneous equation,
and yp is a particular solution.

I This really means the equivalence class of functions that can
be written in this form.

I The equivalence relation is f ∼ g if f − g is a solution of the
homogeneous equation.

Similarly for the matrix equation

Mx = b.
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Gaussian elimination in matrices

I Consists of a series of elementary row operations that do not
change the solution set.

I So at the end, we have a nicer representative of the same
equivalence class (of systems with the same solution).
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Cardinality

What is the cardinality of a set?

I It’s not defined as a function, per se

I We just say when two sets have the same cardinality.

I That’s an equivalence relation, not a function.

I There are some distinguished representatives: 0; 1; 2; . . . ; N; R.
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Multiplication

Why do some equivalence relations respect addition?

What we really need is to make sure that [0] acts like the additive
identity:

[0] + [0] = [0].

Also
−[0] = [0].

This is just the definition of subgroup (in an abelian group).

If these hold, then it’s easy to check that that the equivalence
relation respects addition.

Similarly, the nonabelian case gives rise to normal subgroups.
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Why do some equivalence relations respect multiplication?

What we really need is to make sure that [0] acts like the
multiplicative “killer”:

[0]× [x ] = [0]

for all [x ].
Along with the subgroup condition (for addition), this is just the
definition of ideal.

If these hold, then it’s easy to check that the equivalence relation
respects multiplication.
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