Enumerating simplicial spanning trees of shifted and color-shifted complexes, using simplicial effective resistance

Art Duval¹, Woong Kook², Kang-Ju Lee², Jeremy Martin³

¹University of Texas at El Paso, ²Seoul National University, ³University of Kansas

NMSU Algebra Seminar February 28, 2022

Thanks to Simons Foundation Grant 516801

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Enumerating spanning trees of graphs

- Complete graphs
- Ferrers graphs
- Using electrical network theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Enumerating spanning trees of graphs

- Complete graphs
- Ferrers graphs
- Using electrical network theory
- Simplicial complexes
 - Simplicial electrical network theory
 - Simplicial spanning trees
 - Special families of simplicial complexes
 - Color-shifted complexes (prove conjecture)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Shifted complexes (reprove old result)
- What else might work?

Theorem (Cayley)

 K_n has n^{n-2} spanning trees.

 $T \subseteq E(G)$ is a **spanning tree** of G when:

- 0. spanning: T contains all vertices;
- 1. connected ($ilde{H}_0(T)=0$)

2. no cycles
$$(\tilde{H}_1(T) = 0)$$

3. correct count: |T| = n - 1

If 0. holds, then any two of 1., 2., 3. together imply the third condition.

$$\sum_{T \in ST(K_n)} \text{wt } T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T} \text{wt } e = \prod_{e \in T} (\prod_{v \in e} x_v).$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\sum_{T \in ST(K_n)} \text{wt } T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T} \text{wt } e = \prod_{e \in T} (\prod_{v \in e} x_v).$
Example (K_4)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\sum_{T \in ST(K_n)} \text{wt } T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T} \text{wt } e = \prod_{e \in T} (\prod_{v \in e} x_v).$
Example (K_4)

• 4 trees like:
$$T = 2$$
 • 4 wt $T = (x_1 x_2 x_3 x_4) x_2^2$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\sum_{T \in ST(K_n)} \text{wt } T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T} \text{wt } e = \prod_{e \in T} (\prod_{v \in e} x_v).$
Example (K_4)
3

• 4 trees like:
$$T = 2$$

• 12 trees like: $T = 2$
• 12 trees like:

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

$$\sum_{T \in ST(K_n)} \operatorname{wt} T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T} \operatorname{wt} e = \prod_{e \in T} (\prod_{v \in e} x_v).$
Example (K_4)
• 4 trees like: $T = 2$
• 12 trees like: $T = 2$
• Total is $(x_1x_2x_3x_4)(x_1 + x_2 + x_3 + x_4)^2.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Ferrers graphs (Ehrenborg-van Willigenburg '04)

Spanning trees of Ferrers graphs

wt T = (1234)(123)23123

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Spanning trees of Ferrers graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Spanning trees of Ferrers graphs

Theorem

	1	2	3	4
1	11	21	31	41
2	12	22	<mark>3</mark> 2	4 2
3	13	23		

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Total is (1234)(123)

Theorem

	1	2	3	4
1	11	21	31	41
2	1 2	2 2	3 2	4 2
3	1 3	2 3		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Total is (1234)(123)(1+2+3+4)(1+2)

Theorem

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	1	2	3	4
1	11	21	31	41
2	12	22	<mark>3</mark> 2	4 2
3	13	23		

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^2$ Theorem (Ehrenborg-van Willigenburg) This works in general

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Proof – by electrical network theory!

Set
$$I_{ij} = 1$$

- ► Set $R_{pq} = (pq)^{-1}$
- Find remaining currents so they satisfy Kirchhoff's Laws

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Compute V_{ij} , which is effective resistance since $I_{ij} = 1$

Proof – by electrical network theory!

Set
$$I_{ij} = 1$$

- ► Set $R_{pq} = (pq)^{-1}$
- Find remaining currents so they satisfy Kirchhoff's Laws
- Compute V_{ij} , which is effective resistance since $I_{ij} = 1$

Theorem (Thomassen '90)

$$V_{ij} = rac{spanning trees with ij}{spanning trees without ij}$$

From this, we can easily get

 $\frac{\text{spanning trees of (graph with } ij)}{\text{spanning trees of (graph without } ij)}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Now apply induction

Example ($K_{3,2} = \langle 32 \rangle$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example ($K_{3,2} = \langle 32 \rangle$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example ($K_{3,2} = \langle 32 \rangle$)

.

Example ($K_{3,2} = \langle 32 \rangle$)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Current > Sum of currents at a vertex is 0
 - $\blacktriangleright \ \ker \partial_1$
 - spanned by directed cycles

- Current > Sum of currents at a vertex is 0
 - \blacktriangleright ker ∂_1
 - spanned by directed cycles
- Voltage
 Sum of voltage drops around a cycle is 0
 - (ker ∂_1)^{\perp}
 - spanned by coboundaries of vertices
 - there is a potential function ϕ such that $\phi(\partial e) = V_e$.

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

- Current > Sum of currents at a vertex is 0
 - $\blacktriangleright \ \ker \partial_1$
 - spanned by directed cycles
- Voltage
 Sum of voltage drops around a cycle is 0
 - (ker ∂_1)^{\perp}
 - spanned by coboundaries of vertices
 - there is a potential function ϕ such that $\phi(\partial e) = V_e$.

Ohm
$$V = IR$$

- Current > Sum of currents at a vertex is 0
 - $\blacktriangleright \ \ker \partial_1$
 - spanned by directed cycles
- Voltage > Sum of voltage drops around a cycle is 0
 - (ker ∂_1)^{\perp}
 - spanned by coboundaries of vertices
 - there is a potential function ϕ such that $\phi(\partial e) = V_e$.

Ohm V = IR

Can "solve" circuits by minimizing energy (RI^2 on each edge)

Start with *d*-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

Simplicial networks (Catanzaro-Chernyak-Klein '15)

 \blacktriangleright ker ∂_{a}

Start with *d*-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

- Current
- Sum of currents at a ridge (codimension 1 face) is 0

Spanned by oriented *d*-spheres

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with *d*-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

Current

- \blacktriangleright ker ∂_d
- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented *d*-spheres

Voltage \blacktriangleright (ker ∂_d)^{\perp}

- Sum of voltage circulations around oriented *d*-spheres is 0
- Spanned by coboundaries of ridges
- There is a potential function such that $\phi(\partial \sigma) = V_{\sigma}$.

Start with *d*-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

Current

- $\blacktriangleright \ \ker \partial_d$
- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented *d*-spheres

Voltage \blacktriangleright (ker ∂_d)^{\perp}

- Sum of voltage circulations around oriented *d*-spheres is 0
- Spanned by coboundaries of ridges
- There is a potential function such that $\phi(\partial \sigma) = V_{\sigma}$.

Ohm
$$V = IR$$

Start with *d*-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

- Current •
- $\blacktriangleright \ker \partial_d$
 - Sum of currents at a ridge (codimension 1 face) is 0
 - Spanned by oriented *d*-spheres
- Voltage \blacktriangleright (ker ∂_d)^{\perp}
 - Sum of voltage circulations around oriented d-spheres is 0
 - Spanned by coboundaries of ridges
 - There is a potential function such that $\phi(\partial \sigma) = V_{\sigma}$.

Ohm V = IR

We still have energy minimization.

Let σ be a facet of simplicial complex X

• Set
$$I_{\sigma} = 1$$

- Set $R_{\tau} = (x_{\tau})^{-1}$ for all other facets τ .
- Assume remaining currents satisfy simplicial network laws

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Compute V_{σ} , which is effective resistance since $I_{\sigma} = 1$.

Let σ be a facet of simplicial complex X

• Set
$$I_{\sigma} = 1$$

• Set $R_{\tau} = (x_{\tau})^{-1}$ for all other facets τ .

Assume remaining currents satisfy simplicial network laws

• Compute V_{σ} , which is effective resistance since $I_{\sigma} = 1$.

Theorem (Kook-Lee '18)

$$V_{\sigma} = rac{\hat{k}_d(X)_{\sigma}}{\hat{k}_d(X-\sigma)}$$

where \hat{k}_d is a torsion-weighted simplicial tree count, and $\hat{k}_d(X)_\sigma$ means restricted to trees containing σ .

Let K_n^d denote the complete *d*-dimensional simplicial complex on *n* vertices. $T \subseteq K_n^d$ is a **simplicial spanning tree** of K_n^d when:

- 0. $T_{(d-1)} = K_n^{d-1}$ ("spanning"); 1. $\tilde{H}_{d-1}(T;\mathbb{Z})$ is a finite group ("connected"); 2. $\tilde{H}_d(T;\mathbb{Z}) = 0$ ("acyclic");
- 3. $|T| = \binom{n-1}{d}$ ("count").
- ▶ If 0. holds, then any two of 1., 2., 3. together imply the third.

(日)(

• When d = 1, coincides with usual definition.

Let K_n^d denote the complete *d*-dimensional simplicial complex on *n* vertices. $T \subseteq K_n^d$ is a **simplicial spanning tree** of K_n^d when:

- 0. $T_{(d-1)} = K_n^{d-1}$ ("spanning");
- 1. $\tilde{H}_{d-1}(T;\mathbb{Z})$ is a finite group ("connected");

2.
$$\tilde{H}_d(T; \mathbb{Z}) = 0$$
 ("acyclic");

- 3. $|T| = \binom{n-1}{d}$ ("count").
- ▶ If 0. holds, then any two of 1., 2., 3. together imply the third.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• When d = 1, coincides with usual definition.

Example

n = 5, d = 2: $T = \{123, 124, 125, 134, 135, 245\}$

Conjecture [Bolker '76]

$$\sum_{\mathcal{T}\in\mathcal{T}(K_n^d)} = n^{\binom{n-2}{d}}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem [Kalai '83]

$$k(\mathcal{K}_n^d) = \sum_{T \in \mathcal{T}(\mathcal{K}_n^d)} |\tilde{H}_{d-1}(T)|^2 = n^{\binom{n-2}{d}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Weighted simplicial spanning trees of K_n^d

As before,

wt
$$T = \prod_{F \in \Upsilon}$$
 wt $F = \prod_{F \in T} (\prod_{v \in F} x_v)$

Example

$$T = \{123, 124, 125, 134, 135, 245\}$$

wt $T = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Weighted simplicial spanning trees of K_n^d

As before,

wt
$$T = \prod_{F \in \Upsilon}$$
 wt $F = \prod_{F \in T} (\prod_{v \in F} x_v)$

Example

$$T = \{123, 124, 125, 134, 135, 245\}$$

wt $T = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3$

Theorem (Kalai, '83)

$$\hat{k}(K_n^d) := \sum_{T \in \mathcal{T}(K_n^d)} |\tilde{H}_{d-1}(T)|^2 (\text{wt } T)$$

$$= (x_1 \cdots x_n)^{\binom{n-2}{d-1}} (x_1 + \cdots + x_n)^{\binom{n-2}{d}}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

)

More generally (D.-Klivans-Martin '09)

Let X be a d-dimensional simplicial complex. $T \subseteq X$ is a **simplicial spanning tree** of X when:

0.
$$T_{(d-1)} = X_{(d-1)}$$
 ("spanning");

1. $\tilde{H}_{d-1}(T;\mathbb{Z})$ is a finite group ("connected");

2.
$$\tilde{H}_d(T; \mathbb{Z}) = 0$$
 ("acyclic");

3.
$$f_d(T) = f_d(X) - \tilde{\beta}_d(X) + \tilde{\beta}_{d-1}(X)$$
 ("count").

▶ If 0. holds, then any two of 1., 2., 3. together imply the third.

• When d = 1, coincides with usual definition.

More generally (D.-Klivans-Martin '09)

Let X be a d-dimensional simplicial complex. $T \subseteq X$ is a **simplicial spanning tree** of X when:

0.
$$T_{(d-1)} = X_{(d-1)}$$
 ("spanning");

1. $\tilde{H}_{d-1}(T;\mathbb{Z})$ is a finite group ("connected");

2.
$$\tilde{H}_d(T;\mathbb{Z}) = 0$$
 ("acyclic");

3.
$$f_d(T) = f_d(X) - \tilde{\beta}_d(X) + \tilde{\beta}_{d-1}(X)$$
 ("count").

- ▶ If 0. holds, then any two of 1., 2., 3. together imply the third.
- When d = 1, coincides with usual definition.

$$egin{aligned} &k_d(X) = \sum_{T \in \mathcal{T}(X)} | ilde{H}_{d-1}(T,\mathbb{Z})|^2 \ &\hat{k}_d(X) = \sum_{T \in \mathcal{T}(X)} | ilde{H}_{d-1}(T,\mathbb{Z})|^2 \, ext{wt} \, T \end{aligned}$$

- Skeleta of complete complexes (Kalai '83)
- Complete colorful complexes (Adin '92)
- Shifted complexes (D.-Klivans-Martin, '09)
- Cubical complexes (D.-Klivans-Martin, '11)
- Matroid complexes (Kook-Lee, '16)
- Weighted enumeration of complete colorful and cubical complexes (Aalipour-D.-Kook-Lee-Martin, '18)

- Skeleta of complete complexes (Kalai '83)
- Complete colorful complexes (Adin '92)
- Shifted complexes (D.-Klivans-Martin, '09)
- Cubical complexes (D.-Klivans-Martin, '11)
- Matroid complexes (Kook-Lee, '16)
- Weighted enumeration of complete colorful and cubical complexes (Aalipour-D.-Kook-Lee-Martin, '18)

But all rely on Matrix-Tree Theorem, and computing eigenvalues. For Ferrers graphs, even the unweighted eigenvalues are not integers.

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_1 \dot{\cup} \dots \dot{\cup} V_r$ (V_i is set of vertices of color *i*);
- every facet contains one vertex of each color; and
- if v < w are vertices of the same color, then you can always replace w by v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_1 \dot{\cup} \dots \dot{\cup} V_r$ (V_i is set of vertices of color *i*);
- every facet contains one vertex of each color; and
- if v < w are vertices of the same color, then you can always replace w by v.

Note: r = 2 is Ferrers graphs

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_1 \dot{\cup} \dots \dot{\cup} V_r$ (V_i is set of vertices of color *i*);
- every facet contains one vertex of each color; and
- if v < w are vertices of the same color, then you can always replace w by v.

Note: r = 2 is Ferrers graphs Example $\langle 235, 324, 333 \rangle$

$\begin{aligned} &(1^7 2^7 3^6)(1^7 2^7 3^7)(1^5 2^5 3^5 4^5 5^4) \\ &\times (1+2+3)^5 (1+2)^3 \ (1+2+3)^6 (1+2) \\ &\times (1+\dots+5)^2 (1+2+3+4)(1+2+3) \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$(1^7 2^7 3^6)(1^7 2^7 3^7)(1^5 2^5 3^5 4^5 5^4)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$imes (1+2+3)^5(1+2)^3$

$(1+2+3)^6(1+2)$

$\times (1 + \dots + 5)^2 (1 + 2 + 3 + 4) (1 + 2 + 3)$

$\begin{array}{l} (1^7 2^7 3^6)(1^7 2^7 3^7)(1^5 2^5 3^5 4^5 5^4) \\ \times \ (1+2+3)^5(1+2)^3 \ (1+2+3)^6(1+2) \\ \times \ (1+\cdots+5)^2(1+2+3+4)(1+2+3) \end{array}$

Proof

 $(1^{7}2^{7}3^{6})(1^{7}2^{7}3^{7})(1^{5}2^{5}3^{5}4^{5}5^{4})$ $\times (1+2+3)^5(1+2)^3 (1+2+3)^6(1+2)$ $\times (1 + \dots + 5)^2 (1 + 2 + 3 + 4) (1 + 2 + 3)$

$$\begin{aligned} &(1^7 2^7 3^6)(1^7 2^7 3^7)(1^5 2^5 3^5 4^5 5^4) \\ &\times (1+2+3)^5 (1+2)^3 \ (1+2+3)^6 (1+2) \\ &\times (1+\dots+5)^2 (1+2+3+4)(1+2+3) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conjectured by Aalipour-AD (long matrix manipulation pf. r = 3)

 $\begin{aligned} &(1^7 2^7 3^6)(1^7 2^7 3^7)(1^5 2^5 3^5 4^5 5^4) \\ &\times (1+2+3)^5 (1+2)^3 \ (1+2+3)^6 (1+2) \\ &\times (1+\dots+5)^2 (1+2+3+4)(1+2+3) \end{aligned}$

Conjectured by Aalipour-AD (long matrix manipulation pf. r = 3)

Proof by simplicial effective resistance (DKLM):

• $(1^{7}2^{7}3^{6})(1^{7}2^{7}3^{7})(1^{5}2^{5}3^{5}4^{5}5^{4})(1^{8}1^{7}1^{4})$ for initial tree

 $\begin{aligned} &(1^7 2^7 3^6)(1^7 2^7 3^7)(1^5 2^5 3^5 4^5 5^4) \\ &\times (1+2+3)^5 (1+2)^3 \ (1+2+3)^6 (1+2) \\ &\times (1+\dots+5)^2 (1+2+3+4)(1+2+3) \end{aligned}$

Conjectured by Aalipour-AD (long matrix manipulation pf. r = 3)

Proof by simplicial effective resistance (DKLM):

- $(1^{7}2^{7}3^{6})(1^{7}2^{7}3^{7})(1^{5}2^{5}3^{5}4^{5}5^{4})(1^{8}1^{7}1^{4})$ for initial tree
- induction (ex.) When adding in 235, effective resistance says

 $\frac{\text{trees in new complex}}{\text{trees in original complex}} = \frac{1+2}{1} \frac{1+2+3}{1+2} \frac{1+\dots+5}{1+\dots+4}$

Definition

A shifted complex is a simplicial complex with:

vertex set 1, ..., n;

• if v < w, then you can always replace w by v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example ($\langle 245 \rangle$)

123, 124, 125, 134, 135, 145, 234, 235, 245

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

(日)

э

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

Start with spanning tree of facets with 1

A D > A P > A B > A B >

э

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

- Start with spanning tree of facets with 1
- When adding (e.g.) 23 5, effective resistance says

$$\frac{D_2 D_3 \ D_5}{D_1 D_2 \ D_4} = \frac{D_3}{D_1} \frac{D_5}{D_4}$$

where $D_j = x_1 + \cdots + x_j$.

(日) (四) (日) (日) (日)

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

- Start with spanning tree of facets with 1
- When adding (e.g.) 23 5, effective resistance says

$$\frac{D_2 D_3 \ D_5}{D_1 D_2 \ D_4} = \frac{D_3}{D_1} \frac{D_5}{D_4}$$

where $D_j = x_1 + \cdots + x_j$.

 When done, left with red edges divided by black edges with 1's. What allowed this technique to work for color-shifted and shifted complexes?:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 Every complex in the family is an order ideal (initial segment in partial order)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Every complex in the family is an order ideal (initial segment in partial order)
- Every complex has a canonical spanning tree that is an order ideal within the complex

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Every complex in the family is an order ideal (initial segment in partial order)
- Every complex has a canonical spanning tree that is an order ideal within the complex
- Entire complex can be built one facet at a time, so that at each stage, the partially built complex is still in the family

- Every complex in the family is an order ideal (initial segment in partial order)
- Every complex has a canonical spanning tree that is an order ideal within the complex
- Entire complex can be built one facet at a time, so that at each stage, the partially built complex is still in the family
- Effective resistance when adding each facet is a nice ratio, perhaps "covered by" divided by "covering"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●