Enumerating simplicial spanning trees of shifted and color-shifted complexes, using simplicial effective resistance

Art Duval ${ }^{1}$, Woong Kook ${ }^{2}$, Kang-Ju Lee ${ }^{2}$, Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso, ${ }^{2}$ Seoul National University, ${ }^{3}$ University of Kansas

NMSU Algebra Seminar
February 28, 2022

Thanks to Simons Foundation Grant 516801

Outline

- Enumerating spanning trees of graphs
- Complete graphs
- Ferrers graphs
- Using electrical network theory

Outline

- Enumerating spanning trees of graphs
- Complete graphs
- Ferrers graphs
- Using electrical network theory
- Simplicial complexes
- Simplicial electrical network theory
- Simplicial spanning trees
- Special families of simplicial complexes
- Color-shifted complexes (prove conjecture)
- Shifted complexes (reprove old result)
- What else might work?

Spanning trees of K_{n}

Theorem (Cayley)
K_{n} has n^{n-2} spanning trees.
$T \subseteq E(G)$ is a spanning tree of G when:
0 . spanning: T contains all vertices;

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. correct count: $|T|=n-1$

If 0 . holds, then any two of $1 ., 2 ., 3$. together imply the third condition.

Counting spanning trees

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.

Counting spanning trees

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example $\left(K_{4}\right)$

Counting spanning trees

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example $\left(K_{4}\right)$

- 4 trees like: $T=2 \downarrow$ wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}$

Counting spanning trees

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example $\left(K_{4}\right)$

- 4 trees like: $T=$

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2$. ${ }^{4} \quad$ wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}$

Counting spanning trees

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example $\left(K_{4}\right)$

- 4 trees like: $T=$

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2$, 4 wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}$
- Total is $\left(x_{1} x_{2} x_{3} x_{4}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}$.

Ferrers graphs (Ehrenborg-van Willigenburg '04)

Example ($\langle 42,23\rangle)$

	1	2	4	
1	11	21	31	41
	12	22	32	42
	13	23		

Spanning trees of Ferrers graphs

$$
\text { wt } T=(1234)(123) 23123
$$

Spanning trees of Ferrers graphs


```
\[
\text { wt } T=(1234)(123) 23123
\]
\[
\text { wt } T=(1234)(123) 2^{2} 1^{3}
\]
```


Spanning trees of Ferrers graphs

Theorem

	1	2	3	4
1	11	21	31	41
2	12	22	32	42
3	13	23		

Total is (1234)(123)

Theorem

Total is $(1234)(123)(1+2+3+4)(1+2)$

Theorem

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^{2}$

Theorem

	1		2	3
1	11	21	31	41
	12	22	32	42
	13	23		

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^{2}$
Theorem (Ehrenborg-van Willigenburg)
This works in general

Proof - by electrical network theory!

- Set $l_{i j}=1$
- Set $R_{p q}=(p q)^{-1}$
- Find remaining currents so they satisfy Kirchhoff's Laws
- Compute $V_{i j}$, which is effective resistance since $I_{i j}=1$

Proof - by electrical network theory!

- Set $l_{i j}=1$
- Set $R_{p q}=(p q)^{-1}$
- Find remaining currents so they satisfy Kirchhoff's Laws
- Compute $V_{i j}$, which is effective resistance since $I_{i j}=1$

Theorem (Thomassen '90)

$$
V_{i j}=\frac{\text { spanning trees with } i j}{\text { spanning trees without } i j}
$$

From this, we can easily get

$$
\frac{\text { spanning trees of (graph with } i j \text {) }}{\text { spanning trees of (graph without } i j \text {) }}
$$

Now apply induction

Example (Unweighted)

Example $\left(K_{3,2}=\langle 32\rangle\right)$

Example (Unweighted)

Example ($\left.K_{3,2}=\langle 32\rangle\right)$

Example (Unweighted)

Example ($K_{3,2}=\langle 32\rangle$)

Example (Unweighted)

Example $\left(K_{3,2}=\langle 32\rangle\right)$

$\frac{\text { trees with edge }}{\text { trees without edge }}=\frac{8}{4}=2$

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V
Current \quad Sum of currents at a vertex is 0

- $k e r \partial_{1}$
- spanned by directed cycles

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V
Current \quad Sum of currents at a vertex is 0

- $k e r \partial_{1}$
- spanned by directed cycles

Voltage Sum of voltage drops around a cycle is 0

- $\left(\text { ker } \partial_{1}\right)^{\perp}$
- spanned by coboundaries of vertices
- there is a potential function ϕ such that $\phi(\partial e)=V_{e}$.

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V
Current Sum of currents at a vertex is 0

- $k e r \partial_{1}$
- spanned by directed cycles

Voltage \quad Sum of voltage drops around a cycle is 0

- $\left(\operatorname{ker} \partial_{1}\right)^{\perp}$
- spanned by coboundaries of vertices
- there is a potential function ϕ such that $\phi(\partial e)=V_{e}$.

Ohm $V=I R$

Kirchhoff's Laws

Start with a simple graph. Each edge has a positive resistance R, directed current I, and directed voltage drop V
Current Sum of currents at a vertex is 0

- $k e r \partial_{1}$
- spanned by directed cycles

Voltage Sum of voltage drops around a cycle is 0

- $\left(\operatorname{ker} \partial_{1}\right)^{\perp}$
- spanned by coboundaries of vertices
- there is a potential function ϕ such that $\phi(\partial e)=V_{e}$.

Ohm $V=I R$
Can "solve" circuits by minimizing energy ($R I^{2}$ on each edge)

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

Current

- ker ∂_{d}
- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented d-spheres

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

- ker ∂_{d}
- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented d-spheres

Voltage

- $\left(\text { ker } \partial_{d}\right)^{\perp}$
- Sum of voltage circulations around oriented d-spheres is 0
- Spanned by coboundaries of ridges
- There is a potential function such that $\phi(\partial \sigma)=V_{\sigma}$.

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V

- ker ∂_{d}
- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented d-spheres

Voltage

- $\left(\text { ker } \partial_{d}\right)^{\perp}$
- Sum of voltage circulations around oriented d-spheres is 0
- Spanned by coboundaries of ridges
- There is a potential function such that $\phi(\partial \sigma)=V_{\sigma}$.

Ohm $V=I R$

Simplicial networks (Catanzaro-Chernyak-Klein '15)

Start with d-dimensional simplicial complex. Each facet has a positive resistance R, oriented current I, oriented voltage V
Current $\quad \operatorname{ker} \partial_{d}$

- Sum of currents at a ridge (codimension 1 face) is 0
- Spanned by oriented d-spheres

Voltage $>\left(\operatorname{ker} \partial_{d}\right)^{\perp}$

- Sum of voltage circulations around oriented d-spheres is 0
- Spanned by coboundaries of ridges
- There is a potential function such that $\phi(\partial \sigma)=V_{\sigma}$.

Ohm $V=I R$
We still have energy minimization.

Simplicial effective resistance

Let σ be a facet of simplicial complex X

- Set $I_{\sigma}=1$
- Set $R_{\tau}=\left(x_{\tau}\right)^{-1}$ for all other facets τ.
- Assume remaining currents satisfy simplicial network laws
- Compute V_{σ}, which is effective resistance since $I_{\sigma}=1$.

Simplicial effective resistance

Let σ be a facet of simplicial complex X

- Set $I_{\sigma}=1$
- Set $R_{\tau}=\left(x_{\tau}\right)^{-1}$ for all other facets τ.
- Assume remaining currents satisfy simplicial network laws
- Compute V_{σ}, which is effective resistance since $I_{\sigma}=1$.

Theorem (Kook-Lee '18)

$$
V_{\sigma}=\frac{\hat{k}_{d}(X)_{\sigma}}{\hat{k}_{d}(X-\sigma)}
$$

where \hat{k}_{d} is a torsion-weighted simplicial tree count, and $\hat{k}_{d}(X)_{\sigma}$ means restricted to trees containing σ.

Simplicial spanning trees of K_{n}^{d} [Kalai, '83]

Let K_{n}^{d} denote the complete d-dimensional simplicial complex on n vertices. $T \subseteq K_{n}^{d}$ is a simplicial spanning tree of K_{n}^{d} when:
0. $T_{(d-1)}=K_{n}^{d-1}$ ("spanning");

1. $\tilde{H}_{d-1}(T ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(T ; \mathbb{Z})=0($ "acyclic" $)$;
3. $|T|=\binom{n-1}{d}$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third.
- When $d=1$, coincides with usual definition.

Simplicial spanning trees of K_{n}^{d} [Kalai, '83]

Let K_{n}^{d} denote the complete d-dimensional simplicial complex on n vertices. $T \subseteq K_{n}^{d}$ is a simplicial spanning tree of K_{n}^{d} when:
0. $T_{(d-1)}=K_{n}^{d-1}$ ("spanning");

1. $\tilde{H}_{d-1}(T ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(T ; \mathbb{Z})=0($ "acyclic" $)$;
3. $|T|=\binom{n-1}{d}$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third.
- When $d=1$, coincides with usual definition.

Example

$$
n=5, d=2: T=\{123,124,125,134,135,245\}
$$

Counting simplicial spanning trees of K_{n}^{d}

Conjecture [Bolker '76]

$$
\sum_{T \in \mathcal{T}\left(K_{n}^{d}\right)}=n^{\binom{n-2}{d}}
$$

Counting simplicial spanning trees of K_{n}^{d}

Theorem [Kalai '83]

$$
k\left(K_{n}^{d}\right)=\sum_{T \in \mathcal{T}\left(K_{n}^{d}\right)}\left|\tilde{H}_{d-1}(T)\right|^{2}=n^{\binom{n-2}{d}}
$$

Weighted simplicial spanning trees of K_{n}^{d}

As before,

$$
\text { wt } T=\prod_{F \in \Upsilon} \text { wt } F=\prod_{F \in T}\left(\prod_{v \in F} x_{v}\right)
$$

Example

$$
\begin{aligned}
T & =\{123,124,125,134,135,245\} \\
\text { wt } T & =x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{aligned}
$$

Weighted simplicial spanning trees of K_{n}^{d}

As before,

$$
\text { wt } T=\prod_{F \in \Upsilon} \text { wt } F=\prod_{F \in T}\left(\prod_{v \in F} x_{v}\right)
$$

Example

$$
\begin{aligned}
T & =\{123,124,125,134,135,245\} \\
\text { wt } T & =x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{aligned}
$$

Theorem (Kalai, '83)

$$
\begin{aligned}
\hat{k}\left(K_{n}^{d}\right) & :=\sum_{T \in \mathcal{T}\left(K_{n}^{d}\right)}\left|\tilde{H}_{d-1}(T)\right|^{2}(w t T) \\
& =\left(x_{1} \cdots x_{n}\right)^{\binom{n-2}{d-1}}\left(x_{1}+\cdots+x_{n}\right)^{\binom{n-2}{d}}
\end{aligned}
$$

More generally (D.-Klivans-Martin '09)

Let X be a d-dimensional simplicial complex.
$T \subseteq X$ is a simplicial spanning tree of X when:
0. $T_{(d-1)}=X_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(T ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(T ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(T)=f_{d}(X)-\tilde{\beta}_{d}(X)+\tilde{\beta}_{d-1}(X)$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third.
- When $d=1$, coincides with usual definition.

More generally (D.-Klivans-Martin '09)

Let X be a d-dimensional simplicial complex.
$T \subseteq X$ is a simplicial spanning tree of X when:
0. $T_{(d-1)}=X_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(T ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(T ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(T)=f_{d}(X)-\tilde{\beta}_{d}(X)+\tilde{\beta}_{d-1}(X)$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third.
- When $d=1$, coincides with usual definition.

$$
\begin{aligned}
& k_{d}(X)=\sum_{T \in \mathcal{T}(X)}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2} \\
& \hat{k}_{d}(X)=\sum_{T \in \mathcal{T}(X)}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2} w t T
\end{aligned}
$$

Enumeration results

- Skeleta of complete complexes (Kalai '83)
- Complete colorful complexes (Adin '92)
- Shifted complexes (D.-Klivans-Martin, '09)
- Cubical complexes (D.-Klivans-Martin, '11)
- Matroid complexes (Kook-Lee, '16)
- Weighted enumeration of complete colorful and cubical complexes (Aalipour-D.-Kook-Lee-Martin, '18)

Enumeration results

- Skeleta of complete complexes (Kalai '83)
- Complete colorful complexes (Adin '92)
- Shifted complexes (D.-Klivans-Martin, '09)
- Cubical complexes (D.-Klivans-Martin, '11)
- Matroid complexes (Kook-Lee, '16)
- Weighted enumeration of complete colorful and cubical complexes (Aalipour-D.-Kook-Lee-Martin, '18)
But all rely on Matrix-Tree Theorem, and computing eigenvalues.
For Ferrers graphs, even the unweighted eigenvalues are not integers.

Color-shifted complexes

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_{1} \dot{\cup} \ldots \dot{U} V_{r}$ (V_{i} is set of vertices of color i);
- every facet contains one vertex of each color; and
- if $v<w$ are vertices of the same color, then you can always replace w by v.

Color-shifted complexes

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_{1} \dot{\cup} \ldots \dot{U} V_{r}$ (V_{i} is set of vertices of color i);
- every facet contains one vertex of each color; and
- if $v<w$ are vertices of the same color, then you can always replace w by v.

Note: $r=2$ is Ferrers graphs

Color-shifted complexes

Definition (Babson-Novik, '06)

A color-shifted complex is a simplicial complex with:

- vertex set $V_{1} \dot{\cup} \ldots \dot{U} V_{r}$ (V_{i} is set of vertices of color i);
- every facet contains one vertex of each color; and
- if $v<w$ are vertices of the same color, then you can always replace w by v.

Note: $r=2$ is Ferrers graphs
Example
$\langle 235,324,333\rangle$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 5^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right)
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\times(1+2+3)^{5}(1+2)^{3}
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

\times
$(1+2+3)^{6}(1+2)$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 5^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Conjectured by Aalipour-AD (long matrix manipulation pf. $r=3$)

Proof

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Conjectured by Aalipour-AD (long matrix manipulation pf. $r=3$)
Proof by simplicial effective resistance (DKLM):

- $\left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right)\left(1^{8} 1^{7} 1^{4}\right)$ for initial tree

Proof

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right) \\
& \quad \times(1+2+3)^{5}(1+2)^{3}(1+2+3)^{6}(1+2) \\
& \quad \times(1+\cdots+5)^{2}(1+2+3+4)(1+2+3)
\end{aligned}
$$

Conjectured by Aalipour-AD (long matrix manipulation pf. $r=3$)
Proof by simplicial effective resistance (DKLM):

- $\left(1^{7} 2^{7} 3^{6}\right)\left(1^{7} 2^{7} 3^{7}\right)\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right)\left(1^{8} 1^{7} 1^{4}\right)$ for initial tree
- induction (ex.) When adding in 235, effective resistance says

$$
\frac{\text { trees in new complex }}{\text { trees in original complex }}=\frac{1+2}{1} \frac{1+2+3}{1+2} \frac{1+\cdots+5}{1+\cdots+4}
$$

Shifted complexes

Definition

A shifted complex is a simplicial complex with:

- vertex set $1, \ldots, n$;
- if $v<w$, then you can always replace w by v.

Example ($\langle 245\rangle$)
$123,124,125,134,135,145,234,235,245$

Enumerating spanning trees of shifted complexes

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

Enumerating spanning trees of shifted complexes

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

- Start with spanning tree of facets with 1

Enumerating spanning trees of shifted complexes

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

- Start with spanning tree of facets with 1
- When adding (e.g.) 23 5, effective resistance says

$$
\begin{aligned}
& \quad \frac{D_{2} D_{3} D_{5}}{D_{1} D_{2} D_{4}}=\frac{D_{3}}{D_{1}} \frac{D_{5}}{D_{4}} \\
& \text { where } D_{j}=x_{1}+\cdots+x_{j} .
\end{aligned}
$$

Enumerating spanning trees of shifted complexes

Proved by D.-Klivans-Martin '09; here are ideas of new proof (DKLM) with effective resistance

- Start with spanning tree of facets with 1
- When adding (e.g.) 23 5, effective resistance says

$$
\frac{D_{2} D_{3} D_{5}}{D_{1} D_{2} D_{4}}=\frac{D_{3}}{D_{1}} \frac{D_{5}}{D_{4}}
$$

where $D_{j}=x_{1}+\cdots+x_{j}$.

- When done, left with red edges divided by black edges with 1's.

What else?

What allowed this technique to work for color-shifted and shifted complexes?:

What else?

What allowed this technique to work for color-shifted and shifted complexes?: Partial order on facets such that:

What else?

What allowed this technique to work for color-shifted and shifted complexes?: Partial order on facets such that:

- Every complex in the family is an order ideal (initial segment in partial order)

What else?

What allowed this technique to work for color-shifted and shifted complexes?: Partial order on facets such that:

- Every complex in the family is an order ideal (initial segment in partial order)
- Every complex has a canonical spanning tree that is an order ideal within the complex

What else?

What allowed this technique to work for color-shifted and shifted complexes?: Partial order on facets such that:

- Every complex in the family is an order ideal (initial segment in partial order)
- Every complex has a canonical spanning tree that is an order ideal within the complex
- Entire complex can be built one facet at a time, so that at each stage, the partially built complex is still in the family

What else?

What allowed this technique to work for color-shifted and shifted complexes?: Partial order on facets such that:

- Every complex in the family is an order ideal (initial segment in partial order)
- Every complex has a canonical spanning tree that is an order ideal within the complex
- Entire complex can be built one facet at a time, so that at each stage, the partially built complex is still in the family
- Effective resistance when adding each facet is a nice ratio, perhaps "covered by" divided by "covering"

