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» Enumerating spanning trees of graphs
» Complete graphs

» Ferrers graphs

» Using electrical network theory
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» Enumerating spanning trees of graphs
» Complete graphs

» Ferrers graphs

» Using electrical network theory
» Simplicial complexes

» Simplicial electrical network theory
» Simplicial spanning trees

» Special families of simplicial complexes

» Color-shifted complexes (prove conjecture)

> Shifted complexes (reprove old result)
> What else might work?



Theorem (Cayley)
K,, has n"~2 spanning trees.
T C E(G) is a spanning tree of G when:
0. spanning: T contains all vertices;
1. connected (Ho(T) = 0)
2. no cycles (H1(T) = 0)
3. correct count: |T|=n—1

If 0. holds, then any two of 1., 2., 3. together imply the third
condition.
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Theorem (Cayley-Priifer)

ST owtT =(a )+ +x)" 2
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where wt T = [[oerwte = [[oe (I ce xv)-
Example (K4)

3 1

> 4 trees like: T = 2 4 wt T = (x1x2x3%4)x2
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> 12 trees like: T = 2 4

wt T = (x1x2x3Xa)X1X3



Theorem (Cayley-Priifer)

ST owtT =(a )+ +x)" 2
TeST(Kn)

where wt T = [[oerwte = [[oe (I ce xv)-
Example (K4)

3 1
> 4 trees like: T = 2 4 wt T = (x1x2x3%4)x2
3 1

» 12 trees like: T = 2 4

wt T = (x1x2x3Xa)X1X3
> Total is (x1xox3%3)(x1 + x2 + x3 + xq)?



Example ((42,23))

1 2 3 4
1{11]21]31]a1] 1 1
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wt T = (1234)(123)23123
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wt T = (1234)(123)23123

wt T = (1234)(123)2213




wt T = (1234)(123)23123
1
2

> T =

wt T = (1234)(123)2213
> Total is (1234)(123)(1 +2 + 3 +4)(1 + 2)(1 + 2 + 3)(1 + 2)?



w N =

Total is (1234)(123)
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Total is (1234)(123)(1 +2 + 3+ 4)(1 4 2)
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Total is (1234)(123)(1 +2 + 3+ 4)(1 +2)(1 + 2 + 3)(1 + 2)?
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1 2 3 4
11(21(31
122232

13]23

[y

41

N

42

w

Total is (1234)(123)(1 +2 + 3+ 4)(1 +2)(1 + 2 + 3)(1 + 2)?
Theorem (Ehrenborg-van Willigenburg)
This works in general



> Set Iij =1
> Set Rpg = (pq) "
» Find remaining currents so they satisfy Kirchhoff's Laws

» Compute Vj;, which is effective resistance since /;; = 1
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> Set Iij =1
> Set Rpg = (pq) "
» Find remaining currents so they satisfy Kirchhoff's Laws

» Compute Vj;, which is effective resistance since /;; = 1
Theorem (Thomassen '90)

spanning trees with ij

Vij = . . -
! spanning trees without ij

From this, we can easily get

spanning trees of (graph with 7))
spanning trees of (graph without /j)

Now apply induction
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Example (K3, = (32))
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Example (K3, = (32))
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Example (K;, = (32))

1
2
1 . |
1 2
1 1 |



Example (K;, = (32))

§>>

trees with edge

trees without edge

Z:



Start with a simple graph. Each edge has a positive resistance R,
directed current /, and directed voltage drop V



directed current /, and directed voltage drop V

Start with a simple graph. Each edge has a positive resistance R,
Current

» Sum of currents at a vertex is 0
> kerd,

» spanned by directed cycles



Start with a simple graph. Each edge has a positive resistance R,
directed current /, and directed voltage drop V

Current Sum of currents at a vertex is 0
ker 0y
spanned by directed cycles
Voltage Sum of voltage drops around a cycle is 0

(ker 0y )+

spanned by coboundaries of vertices
there is a potential function ¢ such that ¢(de) = V..
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Start with a simple graph. Each edge has a positive resistance R,
directed current /, and directed voltage drop V

Current Sum of currents at a vertex is 0
ker 0;
spanned by directed cycles
Voltage Sum of voltage drops around a cycle is 0

(ker 0y )+

spanned by coboundaries of vertices
there is a potential function ¢ such that ¢(de) = V..
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Start with a simple graph. Each edge has a positive resistance R,
directed current /, and directed voltage drop V

Current Sum of currents at a vertex is 0
ker 0y
spanned by directed cycles
Voltage Sum of voltage drops around a cycle is 0

(ker 0y )+

spanned by coboundaries of vertices
there is a potential function ¢ such that ¢(de) = V..

Ohm V =IR
Can “solve” circuits by minimizing energy (RI? on each edge)
o = = <

VVYyVVY VYY
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Start with d-dimensional simplicial complex. Each facet has a
positive resistance R, oriented current /, oriented voltage V



Current

> kerd,

Start with d-dimensional simplicial complex. Each facet has a
positive resistance R, oriented current /, oriented voltage V

» Sum of currents at a ridge (codimension 1 face) is 0
» Spanned by oriented d-spheres



Start with d-dimensional simplicial complex. Each facet has a
positive resistance R, oriented current /, oriented voltage V

Current

Voltage

|

VVyVYVYYVYY

2

NP7

2 2

(back: E)

ker Oy

Sum of currents at a ridge (codimension 1 face) is 0
Spanned by oriented d-spheres

(kerd, )t

Sum of voltage circulations around oriented d-spheres is 0

Spanned by coboundaries of ridges
There is a potential function such that ¢(do) = V.



Start with d-dimensional simplicial complex. Each facet has a
positive resistance R, oriented current /, oriented voltage V
Current  » kerd,
Sum of currents at a ridge (codimension 1 face) is 0
Spanned by oriented d-spheres
(kerd, )t
Sum of voltage circulations around oriented d-spheres is 0
Spanned by coboundaries of ridges
There is a potential function such that ¢(do) = V.

Ohm V =1IR

Voltage
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Start with d-dimensional simplicial complex. Each facet has a
positive resistance R, oriented current /, oriented voltage V
Current  » kerd,
Sum of currents at a ridge (codimension 1 face) is 0
Spanned by oriented d-spheres
(kerd, )t
Sum of voltage circulations around oriented d-spheres is 0
Spanned by coboundaries of ridges
There is a potential function such that ¢(do) = V.
Ohm V =1IR

We still have energy minimization.

Voltage

VVyVYVYYVYY
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Let o be a facet of simplicial complex X
> Setl, =1
» Set R, = (x;)~! for all other facets 7.
» Assume remaining currents satisfy simplicial network laws

» Compute V,, which is effective resistance since I, = 1.
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Let o be a facet of simplicial complex X
> Setl, =1
» Set R, = (x;) ! for all other facets 7.
» Assume remaining currents satisfy simplicial network laws

» Compute V,, which is effective resistance since I, = 1.
Theorem (Kook-Lee '18)

_ i%d(X)cr
/Qd(X — O‘)

g

where kg is a torsion-weighted simplicial tree count, and kq(X)4
means restricted to trees containing o.
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Let K¢ denote the complete d-dimensional simplicial complex on n
vertices. T C K¢ is a simplicial spanning tree of K¢ when:

0. T(g—1) = K¢~ (“spanning”);

1. Hy_1(T;Z) is a finite group (“connected”);

2. Hy(T;Z) =0 (“acyclic");

3. T = (";1) (“count™).

> If 0. holds, then any two of 1., 2., 3. together imply the third.

» When d = 1, coincides with usual definition.
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Let K¢ denote the complete d-dimensional simplicial complex on n

vertices. T C K¢ is a simplicial spanning tree of K¢ when:
0. T(g—1) = K¢~ (“spanning”);

1. Hy_1(T;Z) is a finite group (“connected”);
2. Hy(T;Z) =0 (“acyclic”);

3. |T) = ("3Y) (“count”).

> If 0. holds, then any two of 1., 2., 3. together imply the third.
» When d = 1, coincides with usual definition.
Example

n=>5d=2:T={123,124,125,134, 135,245}



Conjecture [Bolker '76]

)y

TeT(KY)
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Theorem [Kalai '83]

k(K =

Z |Ay_1(T)]2 = N
TET(KY)

)



As before,

wtT = Hth: H(Hxv)
FeT
Example

FET veF

T ={123,124,125,134,135, 245}
wt T = xPx5

NN



As before,

wtT = Hth: H(Hxv)
FeT
Example

FET veF

NN

T ={123,124,125,134,135, 245}
wt T = xPx5

Theorem (Kalai, '83)
k(K=" |Aa-a(T)P(wt T)
TeT(KY)

(x1---x )(dj)(xl 4ot Xn)("dz)



Let X be a d-dimensional simplicial complex.
T C X is a simplicial spanning tree of X when:

0. T(g—1) = X(g—1) (“spanning”);

1. A4_1(T;Z) is a finite group ( “connected”);

2. Hy(T;Z) =0 (“acyclic”);

3. f4(T) = fa(X) = Ba(X) + Ba—1(X) (“count”).

» If 0. holds, then any two of 1., 2., 3. together imply the third.
» When d =1, coincides with usual definition.
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Let X be a d-dimensional simplicial complex.
T C X is a simplicial spanning tree of X when:

0. T(g—1) = X(g—1) (“spanning”);

1. A4_1(T;Z) is a finite group ( “connected”);

2. Hy(T;Z) =0 (“acyclic”);

3. f4(T) = fa(X) = Ba(X) + Ba—1(X) (“count”).

» If 0. holds, then any two of 1., 2., 3. together imply the third.
» When d =1, coincides with usual definition.

ka(X)= > [Aa-1(T,Z)]?
TeT(X)

ka(X)= > [Ag_1(T,Z)Pwt T
TeT(X)
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Skeleta of complete complexes (Kalai '83)
Complete colorful complexes (Adin '92)
Shifted complexes (D.-Klivans-Martin, '09)
Cubical complexes (D.-Klivans-Martin, '11)
Matroid complexes (Kook-Lee, '16)

vVvVvyVvVvyyvyy

Weighted enumeration of complete colorful and cubical
complexes (Aalipour-D.-Kook-Lee-Martin, '18)
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Skeleta of complete complexes (Kalai '83)
Complete colorful complexes (Adin '92)
Shifted complexes (D.-Klivans-Martin, '09)
Cubical complexes (D.-Klivans-Martin, '11)
Matroid complexes (Kook-Lee, '16)

vVvVvyVvVvyyvyy

Weighted enumeration of complete colorful and cubical
complexes (Aalipour-D.-Kook-Lee-Martin, '18)

But all rely on Matrix-Tree Theorem, and computing eigenvalues.
For Ferrers graphs, even the unweighted eigenvalues are not
integers.
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Definition (Babson-Novik, '06)
A color-shifted complex is a simplicial complex with:
> vertex set ViU...UV, (V; is set of vertices of color i);

replace w by v.

> every facet contains one vertex of each color; and
> if v < w are vertices of the same color, then you can always



Definition (Babson-Novik, '06)
A color-shifted complex is a simplicial complex with:
> vertex set ViU...UV, (V; is set of vertices of color i);

replace w by v.

> every facet contains one vertex of each color; and
> if v < w are vertices of the same color, then you can always

Note: r = 2 is Ferrers graphs



Definition (Babson-Novik, '06)
A color-shifted complex is a simplicial complex with:
> vertex set ViU...UV, (V; is set of vertices of color i);
> every facet contains one vertex of each color; and
> if v < w are vertices of the same color, then you can always
replace w by v.

Note: r = 2 is Ferrers graphs

Example
(235,324, 333)




(172736)(172737)(1525354554)
x(14+24+3)5142)° (1+2+3)°1+2)
X (14 +5)21+2+3+4)(1+2+3)




(172736)(172737)(1525354554)




x (1+2+3)°(1+2)°




X (1+2+3)%1+2)




X (14 +5)2(1+2+3+4)(1+2+3)




(172736)(172737)(1525354554)
(1 +2+3)5(1 +23 (1+2+3)°%(1+2)
1+2-|—3-|—4 (1+2+3)



(172736)(172737)(1525354554)

x (14+2+3)%1+2)° (1+2+3)°%(1+2)

X (14 +5)%(1+24+3+4)(1+2+3)




(172736)(172737)(1525354554)

x (14+2+3)%1+2)° (1+2+3)°%(1+2)

X (14 +5)%(1+24+3+4)(1+2+3)

Conjectured by Aalipour-AD (long matrix manipulation pf. r = 3)



(172736)(172737)(1525354554)

x (14+2+3)%1+2)° (1+2+3)°%(1+2)

X (14 +5)%(1+24+3+4)(1+2+3)

Conjectured by Aalipour-AD (long matrix manipulation pf. r = 3)
Proof by simplicial effective resistance (DKLM):

> (172736)(172737)(152535455%)(18171%) for initial tree



(172736)(172737)(1525354554)

x (14+2+3)%1+2)° (1+2+3)°%(1+2)

X (14 +5)%(1+24+3+4)(1+2+3)

Conjectured by Aalipour-AD (long matrix manipulation pf. r = 3)
Proof by simplicial effective resistance (DKLM):

> (172736)(172737)(152535455%)(18171%) for initial tree

» induction (ex.) When adding in 235, effective resistance says
trees in new complex ~ 1+21+4+2+31+---+5
trees in original complex 1

142

14+ +4




Definition

A shifted complex is a simplicial complex with:
> vertexset 1,...,m;

» if v < w, then you can always replace w by v.

Example ((245))

123,124, 125,134, 135, 145, 234, 235, 245



Proved by D.-Klivans-Martin
'09; here are ideas of new proof
(DKLM) with effective resis-
tance



Proved by D.-Klivans-Martin
246 '09; here are ideas of new proof
\2 5/ (DKLM) with effective resis-
245 236 tance
/ \ / » Start with spanning tree
1 45 235 of facets with 1
135 234
125 134
124
123



345

Proved by D.-Klivans-Martin
'09; here are ideas of new proof

(DKLM) with effective resis-
tance

> Start with spanning tree
of facets with 1

» When adding (e.g.) 235,
effective resistance says

D>D; Ds D3 Ds
DiD> Dy Dy Ds

where Dj = x1 + -+ + X;.



Proved by D.-Klivans-Martin
'09; here are ideas of new proof
(DKLM) with effective resis-
tance

> Start with spanning tree
of facets with 1

» When adding (e.g.) 235,
effective resistance says

D>D; Ds D3 Ds
DiD> Dy Dy Ds

where Dj = x1 + -+ + X;.
» When done, left with red

edges divided by black
edges with 1's.

=] F



complexes?:

What allowed this technique to work for color-shifted and shifted
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What allowed this technique to work for color-shifted and shifted
complexes?: Partial order on facets such that:
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in partial order)



What allowed this technique to work for color-shifted and shifted
complexes?: Partial order on facets such that:

» Every complex in the family is an order ideal (initial segment
in partial order)

» Every complex has a canonical spanning tree that is an order
ideal within the complex
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What allowed this technique to work for color-shifted and shifted
complexes?: Partial order on facets such that:

» Every complex in the family is an order ideal (initial segment
in partial order)

» Every complex has a canonical spanning tree that is an order
ideal within the complex

» Entire complex can be built one facet at a time, so that at
each stage, the partially built complex is still in the family
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What allowed this technique to work for color-shifted and shifted
complexes?: Partial order on facets such that:

» Every complex in the family is an order ideal (initial segment
in partial order)

» Every complex has a canonical spanning tree that is an order
ideal within the complex

» Entire complex can be built one facet at a time, so that at
each stage, the partially built complex is still in the family

» Effective resistance when adding each facet is a nice ratio,
perhaps “covered by" divided by “covering”
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