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Set dependence

I Can three variables be somehow (statistically) dependent,
even when no two of them are?

I Yes. For instance, Z = 1 + XY + ε.

I We might expect to get any sort of simplicial complex
(subsets of independent sets are independent).

I We can even get the Fano plane: A,B,C independent,
D = AB,E = BC ,F = CA,G = DEF .
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Matroids

We even show that, under not uncommon assumptions, set
dependence gives us a matroid. Useful to statisticians in at least
two ways:

I In regression modeling, matroid structures could be used as a
variable selection procedure to find the most parsimonious set
of X ’s to predict a Y . The results of the matroid circuits
would also inform which interactions (x1x2 products) should
be investigated for inclusion to the model.

I In big data settings, a matroid would identify maximally
independent sets [bases] so that multiplicity can be corrected
at the circuit level rather than the full data set.
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How to picture data

Each variable is a vector, whose components are measurements of
this variable.

I m different variables

I n different trials

I m vectors in Rn

Example

Three variables, four trials

X= (3.1 1 4 2 )
Y= ( 2 1 6.9 8 )
Z= ( 5 2.1 11 9.9)



How to measure dependence

Note in previous example:

I Knowing the value of any two of X ,Y ,Z tells you
approximately the value of the third;

I but knowing only one variable tells you nothing about either
of the others.

So this set is (minimally) dependent.

Question
How can we identify statistically independent sets in general? And
capture non-linear dependence? What is “close enough”?

We will use

I Effective dependence

I Joint cumulants

These appear to be consistent measures of dependence.
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Effective dependence

Effective dependence = 1 - Ψ, where

Ψ =
| det Σ|1/m

(
∑
λi )/m

=
geometric mean

arithmetic mean

is sphericity;

I Σ is covariance matrix (pairwise covariance of variables);

I λi are eigenvalues of Σ.



Joint cumulants

Definition

b(τ)∏
a=1

E (
∏
i∈τa

Xi ) =
∑
σ≤τ

κσ

By Möbius inversion, we can solve for κ’s.

Example
E (X1)E (X2)E (X3)E (X4) = κ1|2|3|4

E (X1X2)E (X3)E (X4) = κ1|2|3|4 + κ12|3|4

So κ12|3|4 = (E (X1X2)− E (X1)E (X2))E (X3)E (X4)

Our test of set dependence: If there is a partition of a set into two
parts such that there is a cumulant dependence κα|β 6= 0.
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Matroids

Matroids make abstract ideas of independence, and model

I linear independence and dependence of sets of vectors in
linear algebra;

I independent (cycle-free) sets of edges in graphs;

I etc.

When does our notion of statistical independence and dependence
of sets of variables also lead to a matroid?



Closure axioms

A matroid on ground set E may be defined by closure axioms:

cl : 2E → 2E

I Closure axioms
I A ⊆ cl(A)
I If A ⊆ B, then cl(A) ⊆ cl(B)
I cl(cl(A)) = cl(A)

I Exchange axiom: If x ∈ cl(A ∪ y)− cl(A), then y ∈ cl(A ∪ x)

For us, x ∈ cl(A) means that knowing the values of all the
variables in A implies knowing something about the value of x .
(Sort of: x is a function of A, with statistical noise and fuzziness.)



Invertibility

Exchange axiom: If x ∈ cl(A ∪ y)− cl(A), then y ∈ cl(A ∪ x)

I x ∈ cl(A ∪ y)− cl(A) means that in using A ∪ y to determine
x , we must use (can’t ignore) y . (“model parsimony”)

I y ∈ cl(A∪ x) means we can “solve” for y in terms of x and A.
(This is sort of invertibility.)

Easiest way for a function (only way for continuous function) to be
invertible is to be monotone in each variable. Fortunately, a
common statistical assumption:

Definition (PRDS)

(Positive regression dependency on each one from a subset.) For
any increasing set D, for for each i ∈ I0, P(X ∈ D|Xi = x) is
nondecreasing in x .
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Composition

Closure axioms

I A ⊆ cl(A) (easy)

I If A ⊆ B, then cl(A) ⊆ cl(B) (easy)

I cl(cl(A)) = cl(A) (not so easy)

Example

When A = x is a single element and cl(x) = {x , y}. We need to
avoid z ∈ cl{x , y}, but z 6= x , y . In other words, z depends on y ,
and y depends on x should mean that z depends on x directly.
This is a kind of transitivity.

More generally, if Z is determined by Y1, . . . ,Yp, and each Yi is
determined by X1, . . . ,Xq, then Z should be determined directly by
X1, . . . ,Xq. This is a kind of composition.

Remark
PRDS means the dependence will be strong enough to guarantee
transitivity, and more generally composition.
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Dependence axioms

How we actually show, via cumulants, that we have a matroid.
The dependent sets D in a matroid satisfy:

I ∅ 6∈ D
I If D ∈ D and D ′ ⊇ D, then D ′ ∈ D
I If I 6∈ D but I ∪ x , I ∪ y ∈ D, then (I − z) ∪ {x , y} ∈ D for all

z ∈ I .
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