# Counting topologies of metric holomorphic polynomial field with simple zeros 

Art Duval ${ }^{1}$, Martín Eduardo Frías-Armenta ${ }^{2}$<br>${ }^{1}$ University of Texas at El Paso, ${ }^{2}$ Universidad de Sonora

Discrete Geometry and Algebraic Combinatorics Conference University of Texas Rio Grande Valley

September 25, 2019
AD supported by Simons Foundation Grant 516801

## Act I

Setting the scene: Trees from flow diagrams


## Metric holomorphic polynomial field with simple zeros



Phase portrait of $X(z) \stackrel{-1}{=} 2 i-i z-2 i z^{4}+i z^{5} \frac{\partial}{\partial z}$

## Metric holomorphic polynomial field with simple zeros



Phase portrait of $X(z) \stackrel{-1}{=} 2 i-i z-2 i z^{4}+i z^{5} \frac{\partial}{\partial z}$

## Complex rotation



Phase portrait of $X(z)\left(\frac{1}{2}-i\right)$

## Complex rotation



## Put it all together, and get a graph



## Trees

So we are looking at unlabeled trees with black and white vertices

- no white vertices are adjacent to each other
- each white vertex is adjacent to at least three black vertices
- no restriction on neighbors of black vertices


## Trees

So we are looking at unlabeled trees with black and white vertices

- no white vertices are adjacent to each other
- each white vertex is adjacent to at least three black vertices
- no restriction on neighbors of black vertices

We want to count such trees up to rotation (but not reflection)

## Example

The first two are the same, but the third is different.


Flashback: Counting (unlabeled) trees


## How to grow different kinds of rooted trees, recursively

- Rooted trees:
- $A=X \cdot E(A)$,
- $E$ stands for "set of"
- Ordered rooted tree:
- $A_{L}=X \cdot L\left(A_{L}\right)$
- $L$ stands for "linear order"
- Planar rooted trees:
- $P=X+X \cdot C\left(A_{L}\right)$
- $C$ stands for "cyclic order"

Example


## How to count different kinds of rooted trees (species)

Species and exponential generating functions

- Rooted trees:
- $\mathcal{A}=X \cdot E(\mathcal{A})$,
- $E$ stands for "set of"
- $E(x)=e^{x}$
- Ordered rooted tree:
- $\mathcal{A}_{L}=X \cdot L\left(\mathcal{A}_{L}\right)$
- $L$ stands for "linear order"
- $L(x)=\frac{1}{1-x}$
- Planar rooted trees:
- $\mathcal{A}_{P}=X+X \cdot C\left(\mathcal{A}_{L}\right)$
- $C$ stands for "cyclic order"
- $C(x)=-\log (1-x)$

These give recursive equations we can solve.

## Unrooting I: Center of tree

## Definition

Center of a tree is the set of vertices $v$ that minimize

$$
\max _{u} \mathrm{~d}(u, v)
$$

It is always either a single vertex, or an edge.

Example


## Unrooting I: Center of tree

## Definition

Center of a tree is the set of vertices $v$ that minimize

$$
\max _{u} \mathrm{~d}(u, v)
$$

It is always either a single vertex, or an edge. So this naturally roots a tree at either a vertex or an edge.

Example


## Unrooting II: Dissymmetry theorem

## Theorem (Dissymmetry)

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

where a denotes unrooted trees and $E_{2}$ is the species of sets with exactly two elements.

## Unrooting II: Dissymmetry theorem

## Theorem (Dissymmetry)

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

where a denotes unrooted trees and $E_{2}$ is the species of sets with exactly two elements.
Proof.
(Sketch) LHS is trees rooted at a vertex or an edge. RHS is trees (unrooted) or ordered pair of trees.

## Unrooting II: Dissymmetry theorem

## Theorem (Dissymmetry)

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

where a denotes unrooted trees and $E_{2}$ is the species of sets with exactly two elements.

## Proof.

(Sketch) LHS is trees rooted at a vertex or an edge. RHS is trees (unrooted) or ordered pair of trees.So we need isomorphism between trees rooted at vertex or edge other than the center, with ordered pairs of rooted trees.


## Isomorphism type (removing the labels)

## Definition

Type generating series of species $F$ is ordinary (non-exponential) generating function of isomorphism types of $F$. But to actually compute, we need:

$$
\tilde{F}(x)=Z_{F}\left(x, x^{2}, x^{3}, \ldots\right)
$$

where $Z_{F}$ is the cycle index series (definition suppressed)
Example

$$
Z_{C}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\sum_{k=1}^{\infty} \frac{\phi(k)}{k} \log \frac{1}{1-x_{k}}
$$

(others not so bad)

## Act III

Return to the present day: Counting our trees


## Black and white vertices, not at the root

Similar to ordered rooted trees, but now color-aware


## Recursive equation

$$
\begin{gathered}
Y_{3}=Y_{1}+Y_{2}=X_{1} \cdot L\left(Y_{3}\right)+X_{2} \cdot L_{\geq 2}\left(X_{1} \cdot L\left(Y_{3}\right)\right) \\
y_{3}=x_{1} \ell+x_{2} \frac{\left(x_{1} \ell\right)^{2}}{1-\left(x_{1} \ell\right)}
\end{gathered}
$$

where $\ell=\frac{1}{1-y_{3}}$.

## Recursive equation

$$
\begin{gathered}
Y_{3}=Y_{1}+Y_{2}=X_{1} \cdot L\left(Y_{3}\right)+X_{2} \cdot L_{\geq 2}\left(X_{1} \cdot L\left(Y_{3}\right)\right) \\
y_{3}=x_{1} \ell+x_{2} \frac{\left(x_{1} \ell\right)^{2}}{1-\left(x_{1} \ell\right)}
\end{gathered}
$$

where $\ell=\frac{1}{1-y_{3}}$. Simplifying,

$$
x_{1}+x_{1}^{2}\left(x_{2}-1\right)-\left(y_{3}-1\right)^{2} y_{3}-x_{1} y_{3}^{2}=0
$$

Unique real root $y_{3}\left(x_{1}, x_{2}\right)=$

## Recursive equation

$$
\begin{array}{r}
Y_{3}=Y_{1}+Y_{2}=X_{1} \cdot L\left(Y_{3}\right)+X_{2} \cdot L_{\geq 2}\left(X_{1} \cdot L\left(Y_{3}\right)\right) \\
y_{3}=x_{1} \ell+x_{2} \frac{\left(x_{1} \ell\right)^{2}}{1-\left(x_{1} \ell\right)}
\end{array}
$$

where $\ell=\frac{1}{1-y_{3}}$. Simplifying,

$$
x_{1}+x_{1}^{2}\left(x_{2}-1\right)-\left(y_{3}-1\right)^{2} y_{3}-x_{1} y_{3}^{2}=0
$$

Unique real root $y_{3}\left(x_{1}, x_{2}\right)=$

$$
\begin{aligned}
& \frac{\left.\left(3-12 \times 1+15 \times 1^{2}+2 \times 1^{3}-27 \times 1^{2} \times 2+\sqrt{\left(4\left(-1+4 \times 1-\times 1^{2}\right)^{3}+\left(2-12 \times 1+15 \times 1^{1}+2 \times 1^{3}-27 \times 1^{2} \times 2\right)^{2}\right)}\right)^{1 / 3}\right)}{\left(3\left(2^{1 / 3}\left(-1+4 \times 1-\times 1^{2}\right)\right)\right.} \\
& -\frac{1}{32^{1 / 3}}\left(2-12 \times 1+15 \times 1^{2}+2 \times 1^{3}-27 \times 1^{2} \times 2+\sqrt{\left(4\left(-1+4 \times 1-\times 1^{2}\right)^{3}+\left(2-12 \times 1+15 \times 1^{2}+2 \times 1^{1}-27 \times 1^{2} \times 2\right)^{2}\right)}\right)
\end{aligned}
$$

## Dissymmetry again

Recall

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

The same arguments apply. But now, paying attention to color,

$$
A \approx\left(X_{1} \cdot\left(1+C\left(Y_{3}\right)\right)\right)+\left(X_{2} \cdot C_{\geq 3}\left(X_{1} \cdot L\left(Y_{3}\right)\right)\right)
$$

## Dissymmetry again

Recall

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

The same arguments apply. But now, paying attention to color,

$$
\begin{aligned}
A & \approx\left(X_{1} \cdot\left(1+C\left(Y_{3}\right)\right)\right)+\left(X_{2} \cdot C_{\geq 3}\left(X_{1} \cdot L\left(Y_{3}\right)\right)\right) \\
E_{2}(A) & \approx E_{2}\left(Y_{1}\right)+Y_{2} \cdot Y_{1}=E_{2}\left(Y_{3}\right)-E_{2}\left(Y_{2}\right)
\end{aligned}
$$

## Dissymmetry again

Recall

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

The same arguments apply. But now, paying attention to color,

$$
\begin{aligned}
A & \approx\left(X_{1} \cdot\left(1+C\left(Y_{3}\right)\right)\right)+\left(X_{2} \cdot C_{\geq 3}\left(X_{1} \cdot L\left(Y_{3}\right)\right)\right) \\
E_{2}(A) & \approx E_{2}\left(Y_{1}\right)+Y_{2} \cdot Y_{1}=E_{2}\left(Y_{3}\right)-E_{2}\left(Y_{2}\right) \\
A^{2} & \approx Y_{1}^{2}+2 Y_{1} Y_{2}=Y_{3}^{2}-Y_{2}^{2}
\end{aligned}
$$

## Dissymmetry again

Recall

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

The same arguments apply. But now, paying attention to color,

$$
\begin{aligned}
A & \approx\left(X_{1} \cdot\left(1+C\left(Y_{3}\right)\right)\right)+\left(X_{2} \cdot C_{\geq 3}\left(X_{1} \cdot L\left(Y_{3}\right)\right)\right) \\
E_{2}(A) & \approx E_{2}\left(Y_{1}\right)+Y_{2} \cdot Y_{1}=E_{2}\left(Y_{3}\right)-E_{2}\left(Y_{2}\right) \\
A^{2} & \approx Y_{1}^{2}+2 Y_{1} Y_{2}=Y_{3}^{2}-Y_{2}^{2}
\end{aligned}
$$

This can be stated more generally for "multi-sort" species.
(And then, to remove labels, again bring in cycle index series.)

## Act IV

Aftermath: Data and Specializations


## Data

$x_{1}+x_{1}^{2}+x_{1}^{3}+x_{2} x_{1}^{3}+2 x_{1}^{4}+2 x_{2} x_{1}^{4}+3 x_{1}^{5}+5 x_{2} x_{1}^{5}+x_{2}^{2} x_{1}^{5}+6 x_{1}^{6}+16 x_{2} x_{1}^{6}+$ $5 x_{2}^{2} x_{1}^{6}+14 x_{1}^{7}+48 x_{2} x_{1}^{7}+30 x_{2} x_{1}^{7}+2 x_{2}^{3} x_{1}^{7}+34 x_{1}^{8}+164 x_{2} x_{1}^{8}+146 x_{2}^{2} x_{1}^{8}+$ $20 x_{2}^{3} x_{1}^{8}+95 x_{1}^{9}+559 x_{2} x_{1}^{9}+693 x_{2}^{2} x_{1}^{9}+175 x_{2}^{3} x_{1}^{9}+7 x_{2}^{4} x_{1}^{9}+280 x_{1}^{10}+$ $1952 x_{2} x_{1}^{10}+3108 x_{2}^{2} x_{1}^{10}+1254 x_{2}^{3} x_{1}^{10}+95 x_{2}^{4} x_{1}^{10}+854 x_{1}^{11}+6872 x_{2} x_{1}^{11}+$ $13608 x_{2}^{2} x_{1}^{11}+7752 x_{2}^{3} x_{1}^{11}+1125 x_{2}^{4} x_{1}^{11}+19 x_{2}^{5} x_{1}^{11}+2694 x_{1}^{12}+24520 x_{2} x_{1}^{12}+$ $58200 x_{2}^{2} x_{1}^{12}+44112 x_{2}^{3} x_{1}^{12}+10108 x_{2}^{4} x_{1}^{12}+480 x_{2}^{5} x_{1}^{12} 8714 x_{1}^{13}+88006 x_{2} x_{1}^{13}+$ $245322 x_{2}^{2} x_{1}^{13}+235557 x_{2}^{3} x_{1}^{13}+77580 x_{2}^{4} x_{1}^{13}+7084 x_{2}^{5} x_{1}^{13}+86 x_{2}^{6} x_{1}^{13}+\cdots$

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 1 | 2 | 3 | 6 | 14 | 34 | 95 | 280 | 854 | 2694 |
| 1 | 0 | 0 | 1 | 2 | 5 | 16 | 48 | 164 | 559 | 1952 | 6872 | 24520 |
| 2 | 0 | 0 | 0 | 0 | 1 | 5 | 30 | 146 | 693 | 3108 | 13608 | 58200 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 20 | 175 | 1254 | 7752 | 44112 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 95 | 1125 | 10108 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 480 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## No white vertices

\[

\]

## One white vertex

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 0 | 1 | 2 | 5 | 16 | 48 | 164 | 559 | 1952 | 6872 | 24520 |

Triangulations of an $n$-gon with exactly one internal vertex.
(Brown, 1964)


## One white vertex

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 0 | 1 | 2 | 5 | 16 | 48 | 164 | 559 | 1952 | 6872 | 24520 |

Triangulations of an $n$-gon with exactly one internal vertex.
(Brown, 1964)


Both are circular orders of (at least three) Catalan-things (ordered rooted trees or rooted triangulations).

## Minimal black vertices

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 1 |  |  |  |  |  |  |  |  |  |  |
| 2 | 0 | 0 | 0 | 0 | 1 |  |  |  |  |  |  |  |  |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |  |  |  |  |  |  |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |  |  |  |  |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 |  |  |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 86 |

Unlabeled 3-gonal cacti with $n$ triangles. (Bóna, Bousquet, Labelle, Leroux, 2000)
To get their graphs from ours in this case, connect all black vertices adjacent to the same white vertex, remove all white vertices.


