Weighted spanning tree enumerators of color-shifted complexes

Ghodratollah Aalipour ${ }^{1,2}$ Art Duval ${ }^{1}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ Sharif University of Technology

AMS Central Sectional Meeting Washington University in St. Louis October 20, 2013

Spanning trees of K_{n}

Theorem (Cayley)
K_{n} has n^{n-2} spanning trees.
$T \subseteq E(G)$ is a spanning tree of G when:
0 . spanning: T contains all vertices;

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. correct count: $|T|=n-1$

If 0 . holds, then any two of $1 ., 2 ., 3$. together imply the third condition.

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} w t T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2},
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example (K_{4})

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2},
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example (K_{4})
-4 trees like: $T=2 \downarrow$ wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}$

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example (K_{4})

- 4 trees like: $T=$

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2$. 4

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}
$$

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2},
$$

$$
\text { where wt } T=\prod_{e \in T} \text { wt } e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)
$$

Example (K_{4})

- 4 trees like: $T=2 \square .4$

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2 . \quad{ }^{4} \quad$ wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}$
- Total is $\left(x_{1} x_{2} x_{3} x_{4}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}$.

Ferrers graphs (Ehrenborg-van Willigenburg '04)

Example ($\langle 42,23\rangle)$

	1			2
3	4			
1	11	21	31	41
	12	22	32	42
	13	23		

Spanning trees of Ferrers graphs

$$
\text { wt } T=(1234)(123) 23123
$$

Spanning trees of Ferrers graphs

Spanning trees of Ferrers graphs

Theorem

	1	2	3	4
1	11	21	31	41
2	12	22	32	42
3	13	23		

Total is (1234)(123)

Theorem

Total is $(1234)(123)(1+2+3+4)(1+2)$

Theorem

		2	3	4
	11	21	31	41
	12	22	32	42
	13	23		

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^{2}$

Theorem

	1	2	3	4
1	11	21	31	41
2	12	22	32	42
3	13	23		

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^{2}$
Theorem (Ehrenborg-van Willigenburg)
This works in general

Laplacian

Theorem (Kirchoff's Matrix-Tree)
G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees
Definition The Laplacian matrix of graph G, denoted by
$L(G)$.

Laplacian

Theorem (Kirchoff's Matrix-Tree)
G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees
Definition The Laplacian matrix of graph G, denoted by
$L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Laplacian

Theorem (Kirchoff's Matrix-Tree)
G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees
Definition The Laplacian matrix of graph G, denoted by $L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

Laplacian

Theorem (Kirchoff's Matrix-Tree)
G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees
Definition The reduced Laplacian matrix of graph G, denoted by $L_{r}(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

"Reduced": remove rows/columns corresponding to any one vertex

Example $\langle 42,23\rangle$

$\partial=$| | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 41 | 42 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 3 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

$$
L=\left(\begin{array}{ccccccc}
3 & 0 & 0 & 0 & -1 & -1 & -1 \\
0 & 3 & 0 & 0 & -1 & -1 & -1 \\
0 & 0 & 2 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 2 & -1 & -1 & 0 \\
-1 & -1 & -1 & -1 & 4 & 0 & 0 \\
-1 & -1 & -1 & -1 & 0 & 4 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

Example $\langle 42,23\rangle$

$\partial=$| | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 41 | 42 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 3 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

$L=\left(\begin{array}{ccccccc}3 & 0 & 0 & 0 & -1 & -1 & -1 \\ 0 & 3 & 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 & 0 \\ -1 & -1 & -1 & -1 & 4 & 0 & 0 \\ -1 & -1 & -1 & -1 & 0 & 4 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 & 2\end{array}\right) \quad L_{r}=\left(\begin{array}{cccccc}3 & 0 & 0 & -1 & -1 & -1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 & -1 & 0 \\ -1 & -1 & -1 & 4 & 0 & 0 \\ -1 & -1 & -1 & 0 & 4 & 0 \\ -1 & 0 & 0 & 0 & 0 & 2\end{array}\right)$

Example $\langle 42,23\rangle$

$\partial=$| | 11 | 12 | 13 | 21 | 22 | 23 | 31 | 32 | 41 | 42 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 3 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

$L=\left(\begin{array}{ccccccc}3 & 0 & 0 & 0 & -1 & -1 & -1 \\ 0 & 3 & 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 & 0 \\ -1 & -1 & -1 & -1 & 4 & 0 & 0 \\ -1 & -1 & -1 & -1 & 0 & 4 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 & 2\end{array}\right) \quad L_{r}=\left(\begin{array}{cccccc}3 & 0 & 0 & -1 & -1 & -1 \\ 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 & -1 & 0 \\ -1 & -1 & -1 & 4 & 0 & 0 \\ -1 & -1 & -1 & 0 & 4 & 0 \\ -1 & 0 & 0 & 0 & 0 & 2\end{array}\right)$
$\operatorname{det}\left(L_{r}\right)=96$, the number of spanning trees of $\langle 42,23\rangle$.

Weighted Matrix-Tree Theorem

$$
\sum_{T \in S T(G)} \text { wt } T=\left|\operatorname{det} \hat{L}_{r}(G)\right|
$$

where $\hat{L}_{r}(G)$ is reduced weighted Laplacian.
Defn 1: $\hat{L}(G)=\hat{D}(G)-\hat{A}(G)$

$$
\begin{aligned}
& \hat{D}(G)=\operatorname{diag}\left(\hat{\operatorname{deg}} v_{1}, \ldots, \hat{\operatorname{deg}} v_{n}\right) \\
& \hat{\operatorname{deg} v_{i}}=\sum_{v_{i} v_{j} \in E} x_{i} x_{j} \\
& \hat{A}(G)=\operatorname{adjacency} \text { matrix } \\
& \left(\text { entry } x_{i} x_{j} \text { for edge } v_{i} v_{j}\right)
\end{aligned}
$$

Defn 2: $\hat{L}(G)=\partial(G) B(G) \partial(G)^{T}$
$\partial(G)=$ incidence matrix
$B(G)$ diagonal, indexed by edges,
entry $\pm x_{i} x_{j}$ for edge $v_{i} v_{j}$

Example ($\langle 42,23\rangle)$

$$
\begin{aligned}
& \hat{L}_{r}=\left(\begin{array}{cccccc}
2(1+2+3) & 0 & 0 & -21 & -22 & -23 \\
0 & 3(1+2) & 0 & -31 & -32 & 0 \\
0 & 0 & 4(1+2) & -41 & -42 & 0 \\
-21 & -31 & -41 & 1(1+2+3+4) & 0 & 0 \\
-22 & -32 & -42 & 0 & 2(1+2+3+4) & 0 \\
-23 & 0 & 0 & 0 & 0 & 3(1+2)
\end{array}\right) \\
& \operatorname{det} \hat{L}_{r}=(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^{2}
\end{aligned}
$$

Simplicial spanning trees of K_{n}^{d} [Kalai, '83]

Let K_{n}^{d} denote the complete d-dimensional simplicial complex on n vertices. $\Upsilon \subseteq K_{n}^{d}$ is a simplicial spanning tree of K_{n}^{d} when:
0. $\Upsilon_{(d-1)}=K_{n}^{d-1}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $|\Upsilon|=\binom{n-1}{d}$ ("count").

- If 0 . holds, then any two of $1 ., 2$., 3. together imply the third.
- When $d=1$, coincides with usual definition.

Simplicial spanning trees of K_{n}^{d} [Kalai, '83]

Let K_{n}^{d} denote the complete d-dimensional simplicial complex on n vertices. $\Upsilon \subseteq K_{n}^{d}$ is a simplicial spanning tree of K_{n}^{d} when:
0. $\Upsilon_{(d-1)}=K_{n}^{d-1}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $|\Upsilon|=\binom{n-1}{d}$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third.
- When $d=1$, coincides with usual definition.

Example
$n=5, d=2: \Upsilon=\{123,124,125,134,135,245\}$

Counting simplicial spanning trees of K_{n}^{d}

Conjecture [Bolker '76]

$$
=n^{\binom{n-2}{d}}
$$

Counting simplicial spanning trees of K_{n}^{d}

Theorem [Kalai '83]

$$
\tau\left(K_{n}^{d}\right)=\sum_{\Upsilon \in S S T\left(K_{n}^{d}\right)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=n^{\left(n_{d}-2\right)}
$$

Weighted simplicial spanning trees of K_{n}^{d}

As before,

$$
\text { wt } \Upsilon=\prod_{F \in \Upsilon} \text { wt } F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example

$$
\begin{aligned}
& \Upsilon=\{123,124,125,134,135,245\} \\
& w t \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{aligned}
$$

Weighted simplicial spanning trees of K_{n}^{d}

As before,

$$
\text { wt } \Upsilon=\prod_{F \in \Upsilon} \text { wt } F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example

$$
\begin{aligned}
\Upsilon & =\{123,124,125,134,135,245\} \\
w t \Upsilon & =x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{aligned}
$$

Theorem (Kalai, '83)

$$
\begin{aligned}
\hat{\tau}\left(K_{n}^{d}\right) & :=\sum_{T \in \operatorname{SST}\left(K_{n}^{d}\right)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}(\text { wt } \Upsilon) \\
& \left.=\left(x_{1} \cdots x_{n}\right)^{\binom{n-2}{d-1}}\left(x_{1}+\cdots+x_{n}\right)\right)^{\binom{n-2}{d}}
\end{aligned}
$$

Simplicial spanning trees of arbitrary simplicial complexes

Let Δ be a d-dimensional simplicial complex.
$\Upsilon \subseteq \Delta$ is a simplicial spanning tree of Δ when:
0. $\Upsilon_{(d-1)}=\Delta_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(\Upsilon)=f_{d}(\Delta)-\tilde{\beta}_{d}(\Delta)+\tilde{\beta}_{d-1}(\Delta)$ ("count").

- If 0 . holds, then any two of $1 ., 2$., 3. together imply the third.
- When $d=1$, coincides with usual definition.

Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, '09)

$$
\hat{\tau}(\Delta)=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \hat{L}_{\Gamma},
$$

where

- $\Gamma \in \operatorname{SST}\left(\Delta_{(d-1)}\right)$

Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, '09)

$$
\hat{\tau}(\Delta)=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \hat{L}_{\Gamma},
$$

where

- $\Gamma \in \operatorname{SST}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ

Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, '09)

$$
\hat{\tau}(\Delta)=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \hat{L}_{\Gamma},
$$

where

- $\Gamma \in \operatorname{SST}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial^{T}{ }_{\Gamma}$

Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, '09)

$$
\hat{\tau}(\Delta)=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \hat{L}_{\Gamma},
$$

where

- $\Gamma \in \operatorname{SST}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial^{T}{ }_{\Gamma}$
- Weighted version: Multiply column F of ∂ by x_{F}

Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, '09)

$$
\hat{\tau}(\Delta)=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \hat{L}_{\Gamma},
$$

where

- $\Gamma \in \operatorname{SST}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial^{T}{ }_{\Gamma}$
- Weighted version: Multiply column F of ∂ by x_{F}

Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, '09)

$$
\hat{\tau}(\Delta)=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \hat{L}_{\Gamma},
$$

where

- $\Gamma \in \operatorname{SST}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial^{T}{ }_{\Gamma}$
- Weighted version: Multiply column F of ∂ by x_{F}

Note: The $\left|\tilde{H}_{d-2}\right|$ terms are often trivial.

Example: Octahedron

- Vertices 1, 2, 1, 2, 1, 2.
- Facets $111,112,121,122,211,212,221,222$,
- $\Gamma=11,12,11,12,22$ spanning tree of 1 -skeleton, so remove (rows and columns corresponding to) those edges from weighted Laplacian.
- $\operatorname{det} \hat{L}_{\Gamma}=(121212)^{3}(1+2)(1+2)(1+2)$.

Color-shifted complexes

Definition (Babson-Novik, '96)
A color-shifted complex is a simplicial complex with:

- vertex set $V_{1} \dot{U} \ldots \dot{U} V_{r}$ (V_{i} is set of vertices of color i);
- $\left|V_{i}\right|=n_{i}$;
- every facet contains one vertex of each color; and
- if $v<w$ are vertices of the same color, then you can always replace w by v.

Note: $r=2$ is Ferrers graphs
Example
Octahedron is $\langle 222\rangle$

Example $\langle 235,324,333\rangle$

facets				
111	112	113	114	115
121	122	123	124	125
131	132	133	134	135
211	212	213	214	215
221	222	223	224	225
231	232	233	234	235
311	312	313	314	
321	322	323	324	
331	332	333		

Example $\langle 235,324,333\rangle$

facets						ridges				
111	112	113	114	115	11	12	13			
121	122	123	124	125	21	22	23			
131	132	133	134	135	31	32	33			
211	212	213	214	215	11	12	13	14	15	
221	222	223	224	225	21	22	23	24	25	
231	232	233	234	235	31	32	33	34		
311	312	313	314		11	12	13	14	15	
321	322	323	324	21	22	23	24	25		
331	332	333			31	32	33	34	35	

Example $\langle 235,324,333\rangle$

facets

111	112	113	114	115
121	122	123	124	125
131	132	133	134	135
211	212	213	214	215
221	222	223	224	225
231	232	233	234	235

$\begin{array}{llll}311 & 312 & 313 & 314\end{array}$
$\begin{array}{llll}321 & 322 & 323 & 324\end{array}$
331332333

reduced ridges

$\begin{array}{lll}11 & 12 & 13\end{array}$
$\begin{array}{lll}21 & 22 & 23\end{array}$
$\begin{array}{lll}31 & 32 & 33\end{array}$
$\begin{array}{lllll}11 & 12 & 13 & 14 & 15\end{array}$
$\begin{array}{lllll}21 & 22 & 23 & 24 & 25\end{array}$
$\begin{array}{llll}31 & 32 & 33 & 34\end{array}$
$\begin{array}{lllll}11 & 12 & 13 & 14 & 15\end{array}$
$\begin{array}{lllll}21 & 22 & 23 & 24 & 25\end{array}$
$\begin{array}{lllll}31 & 32 & 33 & 34 & 35\end{array}$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\begin{aligned}
& \left(1^{7} 2^{7} 3^{6}\right)(1+2+3)^{5}(1+2)^{3} \\
& \quad \times\left(1^{7} 2^{6} 3^{6}\right)(1+2+3)^{8}(1+2) \\
& \quad \times\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right)(1+\cdots+5)^{2}(1+\cdots 4)(1+\cdots 3)
\end{aligned}
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
\times\left(1^{5} 2^{5} 3^{5} 4^{5} 5^{4}\right)(1+\cdots+5)^{2}(1+\cdots 4)(1+\cdots 3)
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

```
* (15 2 5 3 3}\mp@subsup{4}{}{5}\mp@subsup{5}{}{5}
11 12 13
21 22 23
31 32 33
```



```
31 32 33 34
11
```


Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

$$
(1+\cdots+5)^{2}(1+\cdots 4)(1+\cdots 3)
$$

Enumeration: $\hat{\tau}(\langle 235,324,333\rangle)$

Enumeration

Theorem (Aalipour-D.)
When $r=3$, this always works.

Enumeration

Theorem (Aalipour-D.)
When $r=3$, this always works.
Conjecture
When $r>3$, this always works.

Enumeration

Theorem (Aalipour-D.)
When $r=3$, this always works.

Conjecture

When $r>3$, this always works.

Remark

The codimension-1 spanning tree will be a different tree for each color. For each color's factors, treat that color as "last".
Example: $r=4$ (2-dimensional spanning tree): Start with 1, and attach to every edge with no blue vertices. Then use 1, and attach to all edges using a blue non-1 vertex with a non-red vertex. Finally use 1 with edges with a blue non-1 vertex with a red non-1 vertex.

Proof (via example $\langle 235,324,333\rangle$)

$\operatorname{det}\left(\begin{array}{ccccc}22(1+\cdot+5) & 0 & 0 & 0 & \cdots \\ 0 & 23(1+\cdot+5) & 0 & 0 & \cdots \\ 0 & 0 & 22(1+\cdot+4) & 0 & \cdots \\ 0 & 0 & 0 & 33(1+\cdot+3) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$

$$
=\left(2^{2} 3^{2} 2^{2} 3^{2} \cdots\right) \operatorname{det}\left(\begin{array}{ccccc}
1+\cdot+5 & 0 & 0 & 0 & \cdots \\
0 & 1+\cdot+5 & 0 & 0 & \cdots \\
0 & 0 & 1+\cdot+4 & 0 & \cdots \\
0 & 0 & 0 & 1+\cdot+3 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

By "identification of factors" (Martin-Reiner, '03), to show $(1+\cdot+5)^{2}$ is a factor of the det, just show nullspace of this matrix ≥ 2, when $1+\cdot+5=0$.

