Weighted spanning tree enumerators of color-shifted complexes

Ghodratollah Aalipour^{1,2} Art Duval¹

¹University of Texas at El Paso

²Sharif University of Technology

AMS Central Sectional Meeting Washington University in St. Louis October 20, 2013

- 同 ト - ヨ ト - - ヨ ト

Spanning trees of K_n

Theorem (Cayley) K_n has n^{n-2} spanning trees. $T \subseteq E(C)$ is a spanning tree of

- $T \subseteq E(G)$ is a **spanning tree** of G when:
 - 0. spanning: T contains all vertices;
 - 1. connected $(\tilde{H}_0(T) = 0)$
 - 2. no cycles $(\tilde{H}_1(T) = 0)$
 - 3. correct count: |T| = n 1

If 0. holds, then any two of 1., 2., 3. together imply the third condition.

(日) (同) (三) (三)

Theorem (Cayley-Prüfer)

$$\sum_{T\in ST(K_n)} \text{wt } T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T}$ wt $e = \prod_{e \in T} (\prod_{v \in e} x_v)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Cayley-Prüfer)

$$\sum_{T\in ST(K_n)} \text{wt } T = (x_1\cdots x_n)(x_1+\cdots+x_n)^{n-2},$$

where wt $T = \prod_{e \in T} \text{wt } e = \prod_{e \in T} (\prod_{v \in e} x_v).$

Example (K_4)

<ロ> <同> <同> < 同> < 同>

Theorem (Cayley-Prüfer)

$$\sum_{T\in ST(K_n)} \operatorname{wt} T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T}$ wt $e = \prod_{e \in T} (\prod_{v \in e} x_v)$.

Example (K_4)

• 4 trees like:
$$T = 2$$
 • 4 wt $T = (x_1 x_2 x_3 x_4) x_2^2$

<ロ> <同> <同> < 同> < 同>

Theorem (Cayley-Prüfer)

$$\sum_{T\in ST(K_n)} \operatorname{wt} T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T}$ wt $e = \prod_{e \in T} (\prod_{v \in e} x_v)$.

Example (K_4)

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

Theorem (Cayley-Prüfer)

$$\sum_{T\in ST(K_n)} \operatorname{wt} T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2},$$

where wt $T = \prod_{e \in T}$ wt $e = \prod_{e \in T} (\prod_{v \in e} x_v)$.

Example (K_4)

Counting trees Matrix-tree theorem

Ferrers graphs (Ehrenborg-van Willigenburg '04)

Example $(\langle 42, 23 \rangle)$ 1 2 3 4 1 11 21 31 41 2 12 22 32 42 3 13 23 4

- 4 同 🕨 - 4 目 🕨 - 4 目

Counting trees Matrix-tree theorem

Spanning trees of Ferrers graphs

wt
$$T = (1234)(123)23123$$

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of color-shifted complexes

э

Counting trees Matrix-tree theorem

Spanning trees of Ferrers graphs

э

Counting trees Matrix-tree theorem

Spanning trees of Ferrers graphs

- 4 同 6 4 日 6 4 日 6

Counting trees Aatrix-tree theorem

Theorem

	1	2	3	4
1	11	21	31	41
2	12	22	<mark>3</mark> 2	4 2
3	13	23		

Total is (1234)(123)

<ロ> <同> <同> < 同> < 同>

э

Counting trees Matrix-tree theorem

Theorem

	1	2	3	4
1	11	21	31	41
2	1 2	2 2	3 2	4 2
3	1 3	2 3		

Total is (1234)(123)(1+2+3+4)(1+2)

<ロ> (日) (日) (日) (日) (日)

э

Counting trees Matrix-tree theorem

Theorem

Total is $(1234)(123)(1+2+3+4)(1+2)(1+2+3)(1+2)^2$

э

- 4 同 ト 4 ヨ ト 4 ヨ ト

Counting trees Matrix-tree theorem

Theorem

	1	2	3	4
1	11	21	31	41
2	12	22	<mark>3</mark> 2	4 2
3	13	23		

Total is $(1234)(123)(1 + 2 + 3 + 4)(1 + 2)(1 + 2 + 3)(1 + 2)^2$ Theorem (Ehrenborg-van Willigenburg) This works in general

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

-

Theorem (Kirchoff's Matrix-Tree)G has $|\det L_r(G)|$ spanning treesDefinition TheLaplacian matrix of graph G, denoted byL (G).

- 4 同 6 4 日 6 4 日 6

-

Theorem (Kirchoff's Matrix-Tree) *G* has $|\det L_r(G)|$ spanning trees **Definition** The Laplacian matrix of graph *G*, denoted by *L* (*G*). Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\deg v_1, \dots, \deg v_n)$ A(G) = adjacency matrix

Theorem (Kirchoff's Matrix-Tree) G has $|\det L_r(G)|$ spanning trees **Definition** The Laplacian matrix of graph G, denoted by L (G). Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\text{deg } v_1, \ldots, \text{deg } v_n)$ A(G) = adjacency matrixDefn 2: $L(G) = \partial(G)\partial(G)^T$ $\partial(G) =$ incidence matrix (boundary matrix)

(4月) イヨト イヨト

Theorem (Kirchoff's Matrix-Tree) G has $|\det L_r(G)|$ spanning trees **Definition** The reduced Laplacian matrix of graph G, denoted by $L_r(G)$. Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\text{deg } v_1, \ldots, \text{deg } v_n)$ A(G) = adjacency matrixDefn 2: $L(G) = \partial(G)\partial(G)^T$ $\partial(G) =$ incidence matrix (boundary matrix) "Reduced": remove rows/columns corresponding to any one vertex

- 4 同 6 4 日 6 4 日 6

Counting trees Matrix-tree theorem

Example $\langle 42, 23 \rangle$

. 👟		۰.			11	12	13	21	22	<mark>23</mark>	31	<mark>3</mark> 2	41	42
1 \	$\searrow 1$	1		1	-1	-1	-1	0	0	0	0	0	0	0
$2 \leq$	\rightarrow	2		2	0	0	0	-1	-1	-1	0	0	0	0
- /	XX		a _	3	0	0	0	0	0	0	-1	-1	0	0
3 🖌	//~	•3	0 =	4	0	0	0	0	0	0	0	0	-1	-1
. /	/			1	1	0	0	1	0	0	1	0	1	0
4 🦨				2	0	1	0	0	1	0	0	1	0	1
				3	0	0	1	0	0	1	0	0	0	0
	(3	0	0	0	_	1	- 1	- 1\						
	0	3	0	0	_	1	-1	-1						
	0	0	2	0	_	1	-1	0						
L =	0	0	0	2	_	1	-1	0						
	- 1	-1	-1	-1	4		0	0						
	- 1	-1	-1	-1	0		4	0						
	$\setminus -1$	-1	0	0	0		0	2 /						

(日)

Counting trees Matrix-tree theorem

Example $\langle \mathbf{42},\mathbf{23}\rangle$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
4 1 1 0 0 1 0 1 0 1 0 2 0 1 0 0 1 0 0 1 0 1 0 3 0 0 1 0 0 1 0 0 0 0	3	
4 2 0 1 0 0 1 0 1 0 1 3 0 0 1 0 0 1 0 0 1		
3 0 0 1 0 0 1 0 0 0 0	4 🦨	
$ \begin{pmatrix} 3 & 0 & 0 & 0 & -1 & -1 & -1 \\ 0 & 3 & 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 & -1 & 0 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$ \begin{pmatrix} 3 & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix} $	$\begin{pmatrix} -1\\ 0\\ 0 \end{pmatrix}$
$L = \begin{bmatrix} 0 & 0 & 0 & 2 & -1 & -1 & 0 \\ 1 & 1 & 1 & 1 & 4 & 0 & 0 \end{bmatrix} L_r = \begin{bmatrix} -1 & -1 & -1 & 4 & 0 \end{bmatrix}$	$L = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$	0
$ \begin{pmatrix} -1 & -1 & -1 & -1 & -1 & 4 & 0 & 0 \\ -1 & -1 & -1 & -1 & 0 & 4 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & -1 & -1 & 0 & 4 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix} $		0

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of color-shifted complexes

Counting trees Matrix-tree theorem

Example $\langle 42, 23 \rangle$

				11	12	13	21	22	23	31	<mark>3</mark> 2	41	42		
		-	1	-1	-1	-1	0	0	0	0	0	0	0		
			2	0	0	0	-1	-1	-1	0	0	0	0		
		9	3	0	0	0	0	0	0	-1	-1	0	0		
		o =	4	0	0	0	0	0	0	0	0	-1	-1		
			1	1	0	0	1	0	0	1	0	1	0		
			2	0	1	0	0	1	0	0	1	0	1		
			3	0	0	1	0	0	1	0	0	0	0		
	13	0	0	0	_	- 1	- 1	- 1\							
		3	0	0	_	-1	-1	-1^{-1}		$\left(\begin{array}{c}3\\\end{array}\right)$	0	0	-1	-1	-1`
	0	0	2	0	_	-1	-1^{-1}	0		0	2	0	-1	-1	0
L =	0	0	0	2	_	-1	-1	0	$L_r =$	0	0	2	-1	-1	0
_	- 1	-1		1 –	1	4	0	0	_,	-1	-1	-1	4	0	0
	-1	-1	_	- 1 -	1	0	4	0		-1	$^{-1}$	-1	0	4	0
	$\begin{pmatrix} -1 \end{pmatrix}$	-1	0	0	_	0	0	2		\-1	0	0	0	0	2,

det(L_r) = 96, the number of spanning trees of $\langle 42, 23 \rangle$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Τ

Counting trees Matrix-tree theorem

Weighted Matrix-Tree Theorem

$$\sum_{T \in ST(G)} \operatorname{wt} T = |\det \hat{L}_r(G)|,$$

where $\hat{L}_r(G)$ is reduced weighted Laplacian. Defn 1: $\hat{L}(G) = \hat{D}(G) - \hat{A}(G)$ $\hat{D}(G) = \operatorname{diag}(\hat{\operatorname{deg}}v_1, \ldots, \hat{\operatorname{deg}}v_n)$ $\hat{\deg v_i} = \sum_{v_i v_i \in E} x_i x_j$ $\hat{A}(G) = adjacency matrix$ (entry $x_i x_i$ for edge $v_i v_i$) Defn 2: $\hat{L}(G) = \partial(G)B(G)\partial(G)^T$ $\partial(G) =$ incidence matrix B(G) diagonal, indexed by edges, entry $\pm x_i x_i$ for edge $v_i v_i$

・ 同 ト ・ ヨ ト ・ ヨ

Counting trees Matrix-tree theorem

Example (
$$\langle 42, 23 \rangle$$
)

- ・ 同 ト ・ ヨ ト - - ヨ

Simplicial spanning trees of K_n^d [Kalai, '83]

Let K_n^d denote the complete *d*-dimensional simplicial complex on *n* vertices. $\Upsilon \subseteq K_n^d$ is a **simplicial spanning tree** of K_n^d when:

0.
$$\Upsilon_{(d-1)} = K_n^{d-1}$$
 ("spanning");
1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$ ("acyclic");
3. $|\Upsilon| = \binom{n-1}{d}$ ("count").

- ▶ If 0. holds, then any two of 1., 2., 3. together imply the third.
- When d = 1, coincides with usual definition.

< 同 > < 回 > < 回 >

Simplicial spanning trees of K_n^d [Kalai, '83]

Let K_n^d denote the complete *d*-dimensional simplicial complex on *n* vertices. $\Upsilon \subseteq K_n^d$ is a **simplicial spanning tree** of K_n^d when:

0.
$$\Upsilon_{(d-1)} = K_n^{d-1}$$
 ("spanning");
1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$ ("acyclic");
3. $|\Upsilon| = \binom{n-1}{d}$ ("count").

- ▶ If 0. holds, then any two of 1., 2., 3. together imply the third.
- When d = 1, coincides with usual definition.

Example

 $n = 5, d = 2 : \Upsilon = \{123, 124, 125, 134, 135, 245\}$

・ロト ・同ト ・ヨト ・ヨト

C<mark>omplete skeleton</mark> Arbitrary complexes

 $= n^{\binom{n-2}{d}}$

<ロ> <同> <同> < 同> < 同>

3

Counting simplicial spanning trees of K_n^d

Conjecture [Bolker '76]

$$\sum_{\Upsilon \in SST(K_n^d)}$$

Counting simplicial spanning trees of K_n^d

Theorem [Kalai '83]

$$\tau(K_n^d) = \sum_{\Upsilon \in SST(K_n^d)} |\tilde{H}_{d-1}(\Upsilon)|^2 = n^{\binom{n-2}{d}}$$

(日) (同) (三) (三)

э

Weighted simplicial spanning trees of K_n^d

As before,

wt
$$\Upsilon = \prod_{F \in \Upsilon} \operatorname{wt} F = \prod_{F \in \Upsilon} (\prod_{v \in F} x_v)$$

Example

$$\begin{split} & \Upsilon = \{123, 124, 125, 134, 135, 245\} \\ & \text{wt} \ \Upsilon = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3 \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weighted simplicial spanning trees of K_n^d

As before,

wt
$$\Upsilon = \prod_{F \in \Upsilon} \operatorname{wt} F = \prod_{F \in \Upsilon} (\prod_{v \in F} x_v)$$

Example

$$\begin{split} & \Upsilon = \{123, 124, 125, 134, 135, 245\} \\ & \text{wt} \ \Upsilon = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3 \end{split}$$

Theorem (Kalai, '83)

$$\hat{\tau}(K_n^d) := \sum_{T \in SST(K_n^d)} |\tilde{H}_{d-1}(\Upsilon)|^2 (\text{wt } \Upsilon)$$

$$= (x_1 \cdots x_n)^{\binom{n-2}{d-1}} (x_1 + \cdots + x_n)^{\binom{n-2}{d}}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Simplicial spanning trees of arbitrary simplicial complexes

Let Δ be a *d*-dimensional simplicial complex. $\Upsilon \subseteq \Delta$ is a **simplicial spanning tree** of Δ when:

0.
$$\Upsilon_{(d-1)} = \Delta_{(d-1)}$$
 ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");

2.
$$\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$$
 ("acyclic");

3.
$$f_d(\Upsilon) = f_d(\Delta) - \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta)$$
 ("count").

- ▶ If 0. holds, then any two of 1., 2., 3. together imply the third.
- When d = 1, coincides with usual definition.

(人間) システレ イテレ

Theorem (D.-Klivans-Martin, '09)

$$\hat{ au}(\Delta) = rac{| ilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{| ilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} \det \hat{L}_{\Gamma},$$

where

►
$$\Gamma \in SST(\Delta_{(d-1)})$$

< ロ > < 同 > < 回 > < 回 >

э

Theorem (D.-Klivans-Martin, '09)

$$\hat{ au}(\Delta) = rac{| ilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{| ilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2}\det \hat{L}_{\Gamma},$$

where

►
$$\Gamma \in SST(\Delta_{(d-1)})$$

▶ ∂_{Γ} = restriction of ∂_d to faces not in Γ

- 4 同 2 4 日 2 4 日 2

Theorem (D.-Klivans-Martin, '09)

$$\hat{ au}(\Delta) = rac{| ilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{| ilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2}\det \hat{L}_{\Gamma},$$

where

- ► $\Gamma \in SST(\Delta_{(d-1)})$
- ▶ ∂_{Γ} = restriction of ∂_d to faces not in Γ
- reduced Laplacian $L_{\Gamma} = \partial_{\Gamma} \partial^{T}_{\Gamma}$

▲□ ▶ ▲ □ ▶ ▲ □

Theorem (D.-Klivans-Martin, '09)

$$\hat{\tau}(\Delta) = rac{| ilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{| ilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} \det \hat{L}_{\Gamma},$$

where

- ► $\Gamma \in SST(\Delta_{(d-1)})$
- $\partial_{\Gamma} = restriction of \partial_d$ to faces not in Γ
- reduced Laplacian $L_{\Gamma} = \partial_{\Gamma} \partial^{T}_{\Gamma}$
- Weighted version: Multiply column F of ∂ by x_F

- 同 ト - ヨ ト - - ヨ ト

Theorem (D.-Klivans-Martin, '09)

$$\hat{\tau}(\Delta) = rac{| ilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{| ilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} \det \hat{L}_{\Gamma},$$

where

- ► $\Gamma \in SST(\Delta_{(d-1)})$
- $\partial_{\Gamma} = restriction of \partial_d$ to faces not in Γ
- reduced Laplacian $L_{\Gamma} = \partial_{\Gamma} \partial^{T}_{\Gamma}$
- Weighted version: Multiply column F of ∂ by x_F

- 同 ト - ヨ ト - - ヨ ト

Theorem (D.-Klivans-Martin, '09)

$$\hat{\tau}(\Delta) = rac{| ilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{| ilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} \det \hat{L}_{\Gamma},$$

where

- ► $\Gamma \in SST(\Delta_{(d-1)})$
- $\partial_{\Gamma} = restriction of \partial_d$ to faces not in Γ
- reduced Laplacian $L_{\Gamma} = \partial_{\Gamma} \partial^{T}_{\Gamma}$
- Weighted version: Multiply column F of ∂ by x_F

Note: The $|\tilde{H}_{d-2}|$ terms are often trivial.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example: Octahedron

- ▶ Vertices 1, 2, 1, 2, 1, 2.
- ▶ Facets 111, 112, 121, 122, 211, 212, 221, 222,
- Γ = 11, 12, 11, 12, 22 spanning tree of 1-skeleton, so remove (rows and columns corresponding to) those edges from weighted Laplacian.
- det $\hat{L}_{\Gamma} = (121212)^3(1+2)(1+2)(1+2)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Color-shifted complexes

Definition (Babson-Novik, '96)

A color-shifted complex is a simplicial complex with:

• vertex set $V_1 \dot{\cup} \dots \dot{\cup} V_r$ (V_i is set of vertices of color i);

$$\blacktriangleright |V_i| = n_i;$$

- every facet contains one vertex of each color; and
- ▶ if v < w are vertices of the same color, then you can always replace w by v.

Note: r = 2 is Ferrers graphs

Example

Octahedron is $\langle 222 \rangle$

- 同 ト - ヨ ト - - ヨ ト

Example $\langle 235, 324, 333 \rangle$

		facets		
11 1	11 2	11 3	11 4	1 15
<mark>1</mark> 21	12 2	<mark>1</mark> 23	1 24	12 5
13 1	13 2	13 3	13 4	13 5
21 1	<mark>2</mark> 12	<mark>2</mark> 13	<mark>21</mark> 4	<mark>21</mark> 5
<mark>22</mark> 1	<mark>22</mark> 2	<mark>2</mark> 23	<mark>2</mark> 24	<mark>2</mark> 25
<mark>23</mark> 1	<mark>23</mark> 2	<mark>23</mark> 3	<mark>23</mark> 4	<mark>23</mark> 5
31 1	<mark>3</mark> 12	<mark>3</mark> 13	<mark>3</mark> 14	
<mark>3</mark> 21	<mark>3</mark> 22	<mark>3</mark> 23	<mark>3</mark> 24	
<mark>33</mark> 1	<mark>33</mark> 2	<mark>33</mark> 3		

*ロ * * @ * * 注 * * 注 *

Example $\langle 235, 324, 333 \rangle$

		facets						r	idges	
11 1	1 12	<mark>1</mark> 13	11 4	11 5		11	<u>1</u> 2	13		
<mark>1</mark> 21	12 2	1 23	1 24	1 25		21	22	<mark>23</mark>		
<mark>13</mark> 1	13 2	13 3	1 34	13 5		31	<mark>3</mark> 2	<mark>3</mark> 3		
<mark>21</mark> 1	<mark>2</mark> 12	<mark>21</mark> 3	<mark>21</mark> 4	<mark>21</mark> 5		11	1 2	1 3	1 4	1 5
<mark>2</mark> 21	<mark>2</mark> 22	<mark>2</mark> 23	<mark>2</mark> 24	<mark>2</mark> 25		21	<mark>2</mark> 2	<mark>2</mark> 3	<mark>2</mark> 4	<mark>2</mark> 5
<mark>23</mark> 1	<mark>23</mark> 2	<mark>23</mark> 3	<mark>23</mark> 4	<mark>23</mark> 5		3 1	<mark>3</mark> 2	<mark>3</mark> 3	<mark>3</mark> 4	
31 1	3 12	<mark>3</mark> 13	<mark>3</mark> 14			11	12	13	14	15
<mark>3</mark> 21	<mark>3</mark> 22	<mark>3</mark> 23	<mark>3</mark> 24			21	2 2	23	24	25
<mark>33</mark> 1	<mark>3</mark> 32	<mark>3</mark> 33				31	3 2	3 3	34	3 5

*ロ * * @ * * 注 * * 注 *

Example $\langle 235, 324, 333 \rangle$

facets							redu	ced ri	dges	
11 1	1 12	1 13	<mark>11</mark> 4	1 15		11	12	13		
<mark>1</mark> 21	12 2	<mark>1</mark> 23	<mark>1</mark> 24	1 25		21	<mark>2</mark> 2	<mark>23</mark>		
1 31	13 2	13 3	13 4	13 5		31	<mark>3</mark> 2	<mark>3</mark> 3		
21 1	<mark>2</mark> 12	<mark>21</mark> 3	<mark>21</mark> 4	<mark>2</mark> 15		11	12	13	14	15
<mark>22</mark> 1	<mark>2</mark> 22	<mark>2</mark> 23	<mark>2</mark> 24	<mark>2</mark> 25		21	<mark>2</mark> 2	<mark>2</mark> 3	<mark>2</mark> 4	<mark>2</mark> 5
231	<mark>23</mark> 2	<mark>23</mark> 3	<mark>23</mark> 4	<mark>23</mark> 5		31	<mark>3</mark> 2	<mark>3</mark> 3	3 4	
31 1	<mark>3</mark> 12	<mark>3</mark> 13	<mark>3</mark> 14			11	12	13	14	15
<mark>3</mark> 21	<mark>3</mark> 22	<mark>3</mark> 23	<mark>3</mark> 24			21	22	23	24	25
<mark>33</mark> 1	<mark>3</mark> 32	<mark>3</mark> 33				31	3 2	3 3	34	35

*ロ * * @ * * 注 * * 注 *

Enumeration: $\hat{\tau}(\langle 235, 324, 333 \rangle)$

$$\begin{aligned} &(1^7 2^7 3^6)(1+2+3)^5(1+2)^3 \\ &\times (1^7 2^6 3^6)(1+2+3)^8(1+2) \\ &\times (1^5 2^5 3^5 4^5 5^4)(1+\dots+5)^2(1+\dots4)(1+\dots3) \end{aligned}$$

*ロ * * @ * * 注 * * 注 *

Enumeration: $\hat{\tau}(\langle 235, 324, 333 \rangle)$

$\times (1^{5} 2^{5} 3^{5} 4^{5} 5^{4})(1 + \dots + 5)^{2}(1 + \dots 4)(1 + \dots 3)$

(a)

Definition Enumeration

Enumeration: $\hat{\tau}(\langle 235, 324, 333 \rangle)$

\times (1⁵2⁵3⁵4⁵5⁴)

11	12	13		
21	22	<mark>23</mark>		
31	<mark>3</mark> 2	<mark>3</mark> 3		
11	12	13	14	15
21	22	23	24	25
31	32	33	34	
11	12	13	14	15
21	22	23	24	25
31	32	33	34	35

(a)

Enumeration: $\hat{\tau}(\langle 235, 324, 333 \rangle)$

$$\times \qquad (1+\cdots+5)^2(1+\cdots4)(1+\cdots3)$$

・ロト ・回ト ・ヨト ・ヨト

Definition Enumeration

Enumeration: $\hat{\tau}(\langle 235, 324, 333 \rangle)$

$$\times (1^{5}2^{5}3^{5}4^{5}5^{4})(1 + \dots + 5)^{2}(1 + \dots 4)(1 + \dots 3)$$

<ロ> <同> <同> < 同> < 同>

Enumeration

- Theorem (Aalipour-D.)
- When r = 3, this always works.

< ロ > < 同 > < 回 > < 回 >

э

Enumeration

Theorem (Aalipour-D.)

When r = 3, this always works.

Conjecture

When r > 3, this always works.

・ 同 ト ・ ヨ ト ・ ヨ

э

Enumeration

Theorem (Aalipour-D.)

When r = 3, this always works.

Conjecture

When r > 3, this always works.

Remark

The codimension-1 spanning tree will be a different tree for each color. For each color's factors, treat that color as "last". **Example**: r = 4 (2-dimensional spanning tree): Start with 1, and attach to every edge with no blue vertices. Then use 1, and attach to all edges using a blue non-1 vertex with a non-red vertex. Finally use 1 with edges with a blue non-1 vertex with a red non-1 vertex.

- 同 ト - ヨ ト - - ヨ ト

Proof (via example (235, 324, 333))

$$det \begin{pmatrix} 22(1+\cdot+5) & 0 & 0 & 0 & \cdots \\ 0 & 23(1+\cdot+5) & 0 & 0 & \cdots \\ 0 & 0 & 22(1+\cdot+4) & 0 & \cdots \\ 0 & 0 & 0 & 33(1+\cdot+3) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
$$= (2^2 3^2 2^2 3^2 \cdots) det \begin{pmatrix} 1+\cdot+5 & 0 & 0 & 0 & \cdots \\ 0 & 1+\cdot+5 & 0 & 0 & \cdots \\ 0 & 0 & 1+\cdot+4 & 0 & \cdots \\ 0 & 0 & 0 & 1+\cdot+3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

By "identification of factors" (Martin-Reiner, '03), to show $(1 + \cdot + 5)^2$ is a factor of the det, just show nullspace of this matrix ≥ 2 , when $1 + \cdot + 5 = 0$.

(日) (同) (三) (三)