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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Counting trees
Matrix-tree theorem

Spanning trees of Kn

Theorem (Cayley)

Kn has nn−2 spanning trees.

T ⊆ E (G ) is a spanning tree of G when:

0. spanning: T contains all vertices;

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. correct count: |T | = n − 1

If 0. holds, then any two of 1., 2., 3. together imply the third
condition.
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Counting trees
Matrix-tree theorem

Theorem (Cayley-Prüfer)∑
T∈ST (Kn)

wt T = (x1 · · · xn)(x1 + · · ·+ xn)n−2,

where wt T =
∏

e∈T wt e =
∏

e∈T (
∏

v∈e xv ).

Example (K4)

I 4 trees like: T =

r r
rr���
� 1

2

3

4 wt T = (x1x2x3x4)x2
2

I 12 trees like: T =

r r
rr
1

2

3

4 wt T = (x1x2x3x4)x1x3

I Total is (x1x2x3x4)(x1 + x2 + x3 + x4)2.
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Ferrers graphs (Ehrenborg-van Willigenburg ’04)

Example (〈42, 23〉)
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Color-shifted complexes

Counting trees
Matrix-tree theorem

Spanning trees of Ferrers graphs
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wt T = (1234)(123)23123
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wt T = (1234)(123)2213

I Total is (1234)(123)(1 + 2 + 3 + 4)(1 + 2)(1 + 2 + 3)(1 + 2)2
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Theorem

11 21 31 41

12 22 32 42

13 23

1

2

3

1 2 3 4

Total is (1234)(123)

Theorem (Ehrenborg-van Willigenburg)

This works in general
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Counting trees
Matrix-tree theorem

Laplacian

Theorem (Kirchoff’s Matrix-Tree)

G has | det Lr (G )| spanning trees

Definition The

reduced

Laplacian matrix of graph G , denoted by
L

r

(G ).

Defn 1: L(G ) = D(G )− A(G )

D(G ) = diag(deg v1, . . . , deg vn)

A(G ) = adjacency matrix

Defn 2: L(G ) = ∂(G )∂(G )T

∂(G ) = incidence matrix (boundary matrix)

“Reduced”: remove rows/columns corresponding to any one vertex
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Counting trees
Matrix-tree theorem

Example 〈42, 23〉
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∂ =

11 12 13 21 22 23 31 32 41 42
1 -1 -1 -1 0 0 0 0 0 0 0
2 0 0 0 -1 -1 -1 0 0 0 0
3 0 0 0 0 0 0 -1 -1 0 0
4 0 0 0 0 0 0 0 0 -1 -1
1 1 0 0 1 0 0 1 0 1 0
2 0 1 0 0 1 0 0 1 0 1
3 0 0 1 0 0 1 0 0 0 0

L =

0BBBBBBB@

3 0 0 0 − 1 − 1 − 1
0 3 0 0 −1 −1 −1
0 0 2 0 −1 −1 0
0 0 0 2 −1 −1 0
− 1 −1 −1 −1 4 0 0
− 1 −1 −1 −1 0 4 0
− 1 −1 0 0 0 0 2

1CCCCCCCA

Lr =

0BBBBB@
3 0 0 −1 −1 −1
0 2 0 −1 −1 0
0 0 2 −1 −1 0
−1 −1 −1 4 0 0
−1 −1 −1 0 4 0
−1 0 0 0 0 2

1CCCCCA
det(Lr ) = 96, the number of spanning trees of 〈42, 23〉.
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Counting trees
Matrix-tree theorem

Weighted Matrix-Tree Theorem

∑
T∈ST (G)

wt T = | det L̂r (G )|,

where L̂r (G ) is reduced weighted Laplacian.
Defn 1: L̂(G ) = D̂(G )− Â(G )

D̂(G ) = diag( ˆdegv1, . . . , ˆdegvn)
ˆdegvi =

∑
vivj∈E xixj

Â(G ) = adjacency matrix
(entry xixj for edge vivj)

Defn 2: L̂(G ) = ∂(G )B(G )∂(G )T

∂(G ) = incidence matrix
B(G ) diagonal, indexed by edges,
entry ±xixj for edge vivj
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L̂r =

0BBBBB@
2(1 + 2 + 3) 0 0 −21 −22 −23

0 3(1 + 2) 0 −31 −32 0
0 0 4(1 + 2) −41 −42 0
−21 −31 −41 1(1 + 2 + 3 + 4) 0 0
−22 −32 −42 0 2(1 + 2 + 3 + 4) 0
−23 0 0 0 0 3(1 + 2)

1CCCCCA
det L̂r = (1234)(123)(1 + 2 + 3 + 4)(1 + 2)(1 + 2 + 3)(1 + 2)2
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Complete skeleton
Arbitrary complexes

Simplicial spanning trees of K d
n [Kalai, ’83]

Let Kd
n denote the complete d-dimensional simplicial complex on n

vertices. Υ ⊆ Kd
n is a simplicial spanning tree of Kd

n when:

0. Υ(d−1) = Kd−1
n (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. |Υ| =
(n−1

d

)
(“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third.

I When d = 1, coincides with usual definition.

Example

n = 5, d = 2 : Υ = {123, 124, 125, 134, 135, 245}
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Color-shifted complexes

Complete skeleton
Arbitrary complexes

Counting simplicial spanning trees of K d
n

Conjecture [Bolker ’76]

τ(Kd
n ) =

∑
Υ∈SST (Kd

n )

|H̃d−1(Υ)|2

= n(n−2
d )
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Complete skeleton
Arbitrary complexes

Weighted simplicial spanning trees of K d
n

As before,
wt Υ =

∏
F∈Υ

wt F =
∏
F∈Υ

(
∏
v∈F

xv )

Example

Υ = {123, 124, 125, 134, 135, 245}
wt Υ = x5

1 x4
2 x3

3 x3
4 x3

5

Theorem (Kalai, ’83)

τ̂(Kd
n ) :=

∑
T∈SST (Kd

n )

|H̃d−1(Υ)|2(wt Υ)

= (x1 · · · xn)(n−2
d−1)(x1 + · · ·+ xn)(n−2

d )
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Complete skeleton
Arbitrary complexes

Simplicial spanning trees of arbitrary simplicial complexes

Let ∆ be a d-dimensional simplicial complex.
Υ ⊆ ∆ is a simplicial spanning tree of ∆ when:

0. Υ(d−1) = ∆(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third.

I When d = 1, coincides with usual definition.
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Complete skeleton
Arbitrary complexes

Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, ’09)

τ̂(∆) =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det L̂Γ,

where

I Γ ∈ SST (∆(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂
T

Γ

I Weighted version: Multiply column F of ∂ by xF

Note: The |H̃d−2| terms are often trivial.
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Example: Octahedron

I Vertices 1, 2, 1, 2, 1, 2.

I Facets 111, 112, 121, 122, 211, 212, 221, 222,

I Γ = 11, 12, 11, 12, 22 spanning tree of 1-skeleton, so remove
(rows and columns corresponding to) those edges from
weighted Laplacian.

I det L̂Γ = (121212)3(1 + 2)(1 + 2)(1 + 2).
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Color-shifted complexes

Definition
Enumeration

Color-shifted complexes

Definition (Babson-Novik, ’96)

A color-shifted complex is a simplicial complex with:

I vertex set V1∪̇ . . . ∪̇Vr (Vi is set of vertices of color i);

I |Vi | = ni ;

I every facet contains one vertex of each color; and

I if v < w are vertices of the same color, then you can always
replace w by v .

Note: r = 2 is Ferrers graphs

Example

Octahedron is 〈222〉
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Example 〈235, 324, 333〉

facets
111 112 113 114 115
121 122 123 124 125
131 132 133 134 135

211 212 213 214 215
221 222 223 224 225
231 232 233 234 235

311 312 313 314
321 322 323 324
331 332 333

reduced

ridges
11 12 13
21 22 23
31 32 33

11 12 13 14 15
21 22 23 24 25
31 32 33 34

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
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facets
111 112 113 114 115
121 122 123 124 125
131 132 133 134 135

211 212 213 214 215
221 222 223 224 225
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Example 〈235, 324, 333〉

facets
111 112 113 114 115
121 122 123 124 125
131 132 133 134 135

211 212 213 214 215
221 222 223 224 225
231 232 233 234 235

311 312 313 314
321 322 323 324
331 332 333

reduced ridges
11 12 13
21 22 23
31 32 33

11 12 13 14 15
21 22 23 24 25
31 32 33 34

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Enumeration: τ̂(〈235, 324, 333〉)

(172736)(1 + 2 + 3)5(1 + 2)3

× (172636)(1 + 2 + 3)8(1 + 2)

× (1525354554)(1 + · · ·+ 5)2(1 + · · · 4)(1 + · · · 3)

11 12 13
21 22 23
31 32 33

11 12 13 14 15
21 22 23 24 25
31 32 33 34

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

22 23 32 33

1

2

3

4

5

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of color-shifted complexes



Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Enumeration: τ̂(〈235, 324, 333〉)

(172736)(1 + 2 + 3)5(1 + 2)3

× (172636)(1 + 2 + 3)8(1 + 2)

× (1525354554)(1 + · · ·+ 5)2(1 + · · · 4)(1 + · · · 3)

11 12 13
21 22 23
31 32 33

11 12 13 14 15
21 22 23 24 25
31 32 33 34

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

22 23 32 33

1

2

3

4

5

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of color-shifted complexes



Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Enumeration: τ̂(〈235, 324, 333〉)

(172736)(1 + 2 + 3)5(1 + 2)3

× (172636)(1 + 2 + 3)8(1 + 2)

× (1525354554)

(1 + · · ·+ 5)2(1 + · · · 4)(1 + · · · 3)

11 12 13
21 22 23
31 32 33

11 12 13 14 15
21 22 23 24 25
31 32 33 34

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

22 23 32 33

1

2

3

4

5

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of color-shifted complexes



Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Enumeration: τ̂(〈235, 324, 333〉)

(172736)(1 + 2 + 3)5(1 + 2)3

× (172636)(1 + 2 + 3)8(1 + 2)

×

(1525354554)

(1 + · · ·+ 5)2(1 + · · · 4)(1 + · · · 3)

11 12 13
21 22 23
31 32 33

11 12 13 14 15
21 22 23 24 25
31 32 33 34

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

22 23 32 33

1

2

3

4

5

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of color-shifted complexes



Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Enumeration: τ̂(〈235, 324, 333〉)

(172736)(1 + 2 + 3)5(1 + 2)3

× (172636)(1 + 2 + 3)8(1 + 2)

× (1525354554)(1 + · · ·+ 5)2(1 + · · · 4)(1 + · · · 3)

11 12 13
21 22 23
31 32 33

11 12 13 14 15
21 22 23 24 25
31 32 33 34

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

22 23 32 33

1

2

3

4

5

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of color-shifted complexes



Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Enumeration

Theorem (Aalipour-D.)

When r = 3, this always works.

Conjecture

When r > 3, this always works.

Remark
The codimension-1 spanning tree will be a different tree for each
color. For each color’s factors, treat that color as “last”.
Example: r = 4 (2-dimensional spanning tree): Start with 1, and
attach to every edge with no blue vertices. Then use 1, and attach
to all edges using a blue non-1 vertex with a non-red vertex. Finally
use 1 with edges with a blue non-1 vertex with a red non-1 vertex.
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Spanning trees of graphs
Spanning trees of simplicial complexes

Color-shifted complexes

Definition
Enumeration

Proof (via example 〈235, 324, 333〉)

det


22(1 + ·+ 5) 0 0 0 · · ·

0 23(1 + ·+ 5) 0 0 · · ·
0 0 22(1 + ·+ 4) 0 · · ·
0 0 0 33(1 + ·+ 3) · · ·
...

...
...

...
. . .



= (22322232 · · · ) det


1 + ·+ 5 0 0 0 · · ·

0 1 + ·+ 5 0 0 · · ·
0 0 1 + ·+ 4 0 · · ·
0 0 0 1 + ·+ 3 · · ·
...

...
...

...
. . .


By “identification of factors” (Martin-Reiner, ’03), to show
(1 + ·+ 5)2 is a factor of the det, just show nullspace of this
matrix ≥ 2, when 1 + ·+ 5 = 0.
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