Cuts and flows in cell complexes

Art Duval ${ }^{1} \quad$ Caroline Klivans ${ }^{2}$ Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ Brown University
${ }^{3}$ University of Kansas
CombinaTexas 2012
Southwestern University
April 22, 2012

Critical groups, cuts, and flows

Theorem (Bacher, de la Harpe, Nagnibeda)

$$
K(G) \cong \mathcal{C}^{\sharp} / \mathcal{C} \cong \mathcal{F}^{\sharp} / \mathcal{F} \cong \mathbb{Z}^{|E|} /(\mathcal{C} \oplus \mathcal{F})
$$

where G is a graph, $K(G)$ is its critical group, \mathcal{C} is the cut lattice, and \mathcal{F} is the flow lattice.

Critical groups, cuts, and flows

Theorem (Bacher, de la Harpe, Nagnibeda)

$$
K(G) \cong \mathcal{C}^{\sharp} / \mathcal{C} \cong \mathcal{F}^{\sharp} / \mathcal{F} \cong \mathbb{Z}^{|E|} /(\mathcal{C} \oplus \mathcal{F})
$$

where G is a graph, $K(G)$ is its critical group, \mathcal{C} is the cut lattice, and \mathcal{F} is the flow lattice.

Theorem (DKM)

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z}^{n} /(\mathcal{C} \oplus \mathcal{F}) \rightarrow K(\Sigma) \cong \mathcal{C}^{\sharp} / \mathcal{C} \rightarrow \mathbf{T}\left(\tilde{H}_{d-1}(\Sigma, \mathbb{Z})\right) \rightarrow 0 \\
& 0 \rightarrow \mathbf{T}\left(\tilde{H}^{d}(\Sigma, \mathbb{Z})\right) \rightarrow \mathbb{Z}^{n} /(\mathcal{C} \oplus \mathcal{F}) \rightarrow K^{*}(\Sigma) \cong \mathcal{F}^{\sharp} / \mathcal{F} \rightarrow 0
\end{aligned}
$$

where Σ is a d-dimensional cell complex, $K(\Sigma)$ is its critical group, $K^{*}(\Sigma)$ is its cocritical group, \mathcal{C} is the cut lattice, \mathcal{F} is the flow lattice, and \mathbf{T} denotes torsion (finite) part of an abelian group.

Cuts and bonds

Let G be a connected graph
Definition
A cut is a collection of edges in G whose removal disconnects the graph;

Example

Cuts and bonds

Let G be a connected graph
Definition
A cut is a collection of edges in G whose removal disconnects the graph; a bond is a minimal cut.

Example

Cuts and bonds

Let G be a connected graph
Definition
A cut is a collection of edges in G whose removal disconnects the graph; a bond is a minimal cut.

Example

Cuts and bonds

Let G be a connected graph
Definition
A cut is a collection of edges in G whose removal disconnects the graph; a bond is a minimal cut.

Example

Remark
Using matroid language, bonds are cocircuits.

Cut space

The vertex star of every vertex is a cut;

Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition
Cut space of G is image of coboundary, $\operatorname{im} \partial^{*}$, i.e., row-span of boundary [incidence] matrix.

Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition

Cut space of G is image of coboundary, im ∂^{*}, i.e., row-span of boundary [incidence] matrix.

Example

Sum of first two rows (∂^{*} of north shore) is supported on bond.

Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition

Cut space of G is image of coboundary, im ∂^{*}, i.e., row-span of boundary [incidence] matrix.

Example

Sum of first two rows (∂^{*} of north shore) is supported on bond.

Question

What is a basis?

Fundamental bond

Definition

Given a spanning tree T

Fundamental bond

Definition

Given a spanning tree T and an edge $e \in T$, the fundamental bond is the unique bond containing e, and no other edge from T.

Example

Fundamental bond

Definition

Given a spanning tree T and an edge $e \in T$, the fundamental bond is the unique bond containing e, and no other edge from T.

Example

Theorem
For a fixed spanning tree, the collection of fundamental bonds forms a basis of cut space

Flows and circuits

Definition
A circuit is a closed path with no repeated vertices.

Flows and circuits

Definition

A circuit is a closed path with no repeated vertices.
In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define

Flows and circuits

Definition

A circuit is a closed path with no repeated vertices.
In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define Definition
Flow space of G is kernel of boundary matrix

Flows and circuits

Definition

A circuit is a closed path with no repeated vertices.
In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define

Definition
Flow space of G is kernel of boundary matrix
Question
What is a basis?

Fundamental circuit

Definition
 Given a spanning tree T

Fundamental circuit

Definition

Given a spanning tree T and an edge $e \notin T$, the fundamental circuit is the unique circuit in $T \cup\{e\}$.

Example

Fundamental circuit

Definition

Given a spanning tree T and an edge $e \notin T$, the fundamental circuit is the unique circuit in $T \cup\{e\}$.

Example

Theorem
For a fixed spanning tree, the collection of fundamental circuits forms a basis of flow space

Cell complexes

Definition
A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions),

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.
Think the boundary of each facet being a \mathbb{Z}-linear combination of ridges.

Remark
Any \mathbb{Z} matrix can be the boundary matrix of a cell complex

Examples

Cellular matroids

- Matroid whose elements are columns of boundary matrix

Cellular matroids

- Matroid whose elements are columns of boundary matrix
- Dependent sets are the supports of the kernel of the boundary matrix

Cellular matroids

- Matroid whose elements are columns of boundary matrix
- Dependent sets are the supports of the kernel of the boundary matrix
- Bases?...

Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that: $\Upsilon_{(d-1)}=X_{(d-1)}($ same $(d-1)$-skeleton $)$,

Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that:

$$
\begin{aligned}
& \Upsilon_{(d-1)}=X_{(d-1)}(\text { same }(d-1) \text {-skeleton }), \text { and } \\
& \quad \vee \tilde{H}_{d}(\Upsilon ; \mathbb{Q})=0 \text { and } \tilde{H}_{d-1}(\Upsilon ; \mathbb{Q})=\tilde{H}_{d-1}(X ; \mathbb{Q})
\end{aligned}
$$

Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that:

$$
\begin{aligned}
& \Upsilon_{(d-1)}=X_{(d-1)}(\text { same }(d-1) \text {-skeleton }), \text { and } \\
& \quad-\tilde{H}_{d}(\Upsilon ; \mathbb{Q})=0 \text { and } \tilde{H}_{d-1}(\Upsilon ; \mathbb{Q})=\tilde{H}_{d-1}(X ; \mathbb{Q})
\end{aligned}
$$

- Equivalently, $\{\partial F: F \in \Upsilon\}$ is a vector space basis for $\operatorname{im} \partial$

Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that:

$$
\begin{aligned}
& \Upsilon_{(d-1)}=X_{(d-1)}(\text { same }(d-1) \text {-skeleton }), \text { and } \\
& \quad-\tilde{H}_{d}(\Upsilon ; \mathbb{Q})=0 \text { and } \tilde{H}_{d-1}(\Upsilon ; \mathbb{Q})=\tilde{H}_{d-1}(X ; \mathbb{Q})
\end{aligned}
$$

- Equivalently, $\{\partial F: F \in \Upsilon\}$ is a vector space basis for $\operatorname{im} \partial$

Cut space and bonds

Definition
i-dimensional cut space of cell complex X is

$$
\operatorname{Cut}_{i}(X)=\operatorname{im}\left(\partial_{i}^{*}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i}(X, \mathbb{R})\right) .
$$

Remark

Cut space is the rowspace of the boundary matrix.

Cut space and bonds

Definition
i-dimensional cut space of cell complex X is

$$
\operatorname{Cut}_{i}(X)=\operatorname{im}\left(\partial_{i}^{*}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i}(X, \mathbb{R})\right)
$$

A bond of X is a minimal set of i-faces that support non- 0 vector of $\mathrm{Cut}_{i}(X)$

Remark
Cut space is the rowspace of the boundary matrix.
Remark
Bonds are the cocircuits of cellular matroid

Topological interpretation of bonds

Remark

Bonds are minimal for increasing ($i-1$)-dimensional homology instead of decreasing i-dimensional homology

Examples

Characteristic vectors of bonds

Fix bond B
Proposition
$\operatorname{Cut}_{B}(X):=\left(\{0\} \cup\left(\operatorname{Cut}_{i}(X) \cap\{v: \operatorname{supp}(v)=B\}\right)\right)$ is
1-dimensional
Example

Topological interpretation of characteristic vector

Example

If $B=\left\{F_{5}, F_{7}\right\}$, then Cut ${ }_{B}$ spanned by $5 F_{5}+7 F_{7}$.

Topological interpretation of characteristic vector

Example

If $B=\left\{F_{5}, F_{7}\right\}$, then Cut ${ }_{B}$ spanned by $5 F_{5}+7 F_{7}$.

Theorem (DKM)
Let A be a cellular spanning forest of X / B. Then $^{\operatorname{Cut}_{B}}(X)$ is spanned by

$$
\chi(B, A):=\sum_{F \in B} \pm|\tilde{H}(A \cup F, \mathbb{Z})| F
$$

Topological interpretation of characteristic vector

Example

$$
\text { If } B=\left\{F_{5}, F_{7}\right\}, \text { then } \chi\left(B, F_{2}\right)=2\left(5 F_{5}+7 F_{7}\right)
$$

$$
\text { but } \chi\left(B, F_{3}\right)=3\left(5 F_{5}+7 F_{7}\right)
$$

Theorem (DKM)
Let A be a cellular spanning forest of X / B. Then $^{\operatorname{Cut}_{B}}(X)$ is spanned by

$$
\chi(B, A):=\sum_{F \in B} \pm|\tilde{H}(A \cup F, \mathbb{Z})| F
$$

Definition
The characteristic vector of B is $\chi(B, A)$

Fundamental bond

Definition

Given a spanning forest Υ and an face $F \in \Upsilon$, the fundamental bond is the unique bond containing F, and no other face from Υ.

Example

Fundamental bond

Definition

Given a spanning forest Υ and an face $F \in \Upsilon$, the fundamental bond is the unique bond containing F, and no other face from Υ.

Example

	$\Upsilon=\{124,134,123,135,235\}$	
	F	B
\%	124	\{124, 234\}
1	134	\{124, 134 $\}$
易	123	\{234, 123, 125\}
	135	$\{125,135\}$
	235	$\{125,235\}$

Theorem (DKM)

For a fixed spanning forest, the collection of characteristic vectors of fundamental bonds forms a basis of cut space

Flows and circuits

Definition
i-dimensional flow space of cell complex X is

$$
\operatorname{Flow}_{i}(X)=\operatorname{ker}\left(\partial_{i}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i-1}(X, \mathbb{R})\right)
$$

Flows and circuits

Definition
i-dimensional flow space of cell complex X is

$$
\operatorname{Flow}_{i}(X)=\operatorname{ker}\left(\partial_{i}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i-1}(X, \mathbb{R})\right)
$$

A circuit of X is a minimal set of i-faces that support non- 0 vector of Flow $_{i}(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

Flows and circuits

Definition
i-dimensional flow space of cell complex X is

$$
\operatorname{Flow}_{i}(X)=\operatorname{ker}\left(\partial_{i}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i-1}(X, \mathbb{R})\right)
$$

A circuit of X is a minimal set of i-faces that support non- 0 vector of Flow $_{i}(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

Example
Bipyramid

Characteristic vectors of circuits

Fix circuit C
Proposition
$\operatorname{Flow}_{C}(X):=\left(\{0\} \cup\left(\operatorname{Flow}_{i}(X) \cap\{v: \operatorname{supp}(v)=C\}\right)\right)$ is 1-dimensional

Example
Bipyramid

Topological interpretation of characteristic vector

Example
$2\left(\begin{array}{lrrr} \\ 2 & 0 & -2 & 2 \\ 1 & 0 & -2 \\ 1 & 2 & 0\end{array}\right.$;

Topological interpretation of characteristic vector

Example

Theorem (DKM)

$$
\chi(C)=\sum_{F \in C} \pm|\mathbf{T} \tilde{H}(C \backslash F, \mathbb{Z})| F
$$

spans $\operatorname{Cut}_{C}(X)$, where \mathbf{T} stands for torsion part.

Topological interpretation of characteristic vector

Example
$\left(2 \int^{2} \begin{array}{rrrr}0 & -2 & 2 \\ 1 & 1 & 0 & -2 \\ -1 & 2 & 0\end{array} ; \tilde{H}\left(C \backslash F_{1}\right)=\mathbb{Z} \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right) ;\right.$
Theorem (DKM)

$$
\chi(C)=\sum_{F \in C} \pm|\mathbf{T} \tilde{H}(C \backslash F, \mathbb{Z})| F
$$

spans $\operatorname{Cut}_{C}(X)$, where \mathbf{T} stands for torsion part.

Topological interpretation of characteristic vector

Example
$\left(2 \int^{2} \begin{array}{rrrr}1 & 0 & -2 & 2 \\ 1 & 0 & -2 \\ -1 & 2 & 0\end{array} ; \tilde{H}\left(C \backslash F_{1}\right)=\mathbb{Z} \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right) ; \chi(C)=(4,2,2)\right.$
Theorem (DKM)

$$
\chi(C)=\sum_{F \in C} \pm|\mathbf{T} \tilde{H}(C \backslash F, \mathbb{Z})| F
$$

spans $\operatorname{Cut}_{C}(X)$, where \mathbf{T} stands for torsion part.
Definition
The characteristic vector of C is $\chi(C)$

Fundamental circuit

Definition

Given a spanning forest Υ and an face $F \notin \Upsilon$, the fundamental circuit is the unique circuit in $\Upsilon \cup\{F\}$.

Example

Fundamental circuit

Definition

Given a spanning forest Υ and an face $F \notin \Upsilon$, the fundamental circuit is the unique circuit in $\Upsilon \cup\{F\}$.

Example

Theorem (DKM)
For a fixed spanning forest, the collection of characteristic vectors of fundamental circuits forms a basis of flow space

