Cuts and flows in cell complexes

Art Duval¹ Caroline Klivans² Jeremy Martin³

¹University of Texas at El Paso

²Brown University

³University of Kansas

CombinaTexas 2012 Southwestern University April 22, 2012

- 4 同 6 4 日 6 4 日 6

Motivation Cuts and bonds Flows and circuits

Critical groups, cuts, and flows

Theorem (Bacher, de la Harpe, Nagnibeda)

$$\mathcal{K}(\mathcal{G})\cong \mathcal{C}^{\sharp}/\mathcal{C}\cong \mathcal{F}^{\sharp}/\mathcal{F}\cong \mathbb{Z}^{|\mathcal{E}|}/(\mathcal{C}\oplus \mathcal{F})$$

where G is a graph, K(G) is its critical group, C is the cut lattice, and \mathcal{F} is the flow lattice.

Image: Image:

(*) *) *) *)

Motivation Cuts and bonds Flows and circuits

Critical groups, cuts, and flows

Theorem (Bacher, de la Harpe, Nagnibeda)

$$\mathcal{K}(\mathcal{G})\cong \mathcal{C}^{\sharp}/\mathcal{C}\cong \mathcal{F}^{\sharp}/\mathcal{F}\cong \mathbb{Z}^{|\mathcal{E}|}/(\mathcal{C}\oplus \mathcal{F})$$

where G is a graph, K(G) is its critical group, C is the cut lattice, and \mathcal{F} is the flow lattice.

Theorem (DKM)

$$\begin{split} 0 &\to \mathbb{Z}^n / (\mathcal{C} \oplus \mathcal{F}) \to \mathcal{K}(\Sigma) \cong \mathcal{C}^{\sharp} / \mathcal{C} \to \mathbf{T}(\tilde{H}_{d-1}(\Sigma, \mathbb{Z})) \to 0 \\ 0 &\to \mathbf{T}(\tilde{H}^d(\Sigma, \mathbb{Z})) \to \mathbb{Z}^n / (\mathcal{C} \oplus \mathcal{F}) \to \mathcal{K}^*(\Sigma) \cong \mathcal{F}^{\sharp} / \mathcal{F} \to 0 \end{split}$$

where Σ is a d-dimensional cell complex, $K(\Sigma)$ is its critical group, $K^*(\Sigma)$ is its cocritical group, C is the cut lattice, \mathcal{F} is the flow lattice, and **T** denotes torsion (finite) part of an abelian group.

イロト イポト イラト イラト

Motivation Cuts and bonds Flows and circuits

Cuts and bonds

Let G be a connected graph

Definition

A cut is a collection of edges in G whose removal disconnects the graph;

< 17 >

글 🖌 🖌 글 🕨

э

Motivation Cuts and bonds ⁼lows and circuits

Cuts and bonds

Let G be a connected graph

Definition

A cut is a collection of edges in G whose removal disconnects the graph; a bond is a minimal cut.

< 同 ▶

글 > - < 글 >

Motivation Cuts and bonds ⁼lows and circuits

Cuts and bonds

Let G be a connected graph

Definition

A cut is a collection of edges in G whose removal disconnects the graph; a bond is a minimal cut.

< A >

-

- ₹ 🖬 🕨

Motivation Cuts and bonds ⁼lows and circuits

Cuts and bonds

Let G be a connected graph

Definition

A cut is a collection of edges in G whose removal disconnects the graph; a bond is a minimal cut.

Remark

Using matroid language, bonds are cocircuits.

Motivation Cuts and bonds Flows and circuits

Cut space

The vertex star of every vertex is a cut;

<ロ> <同> <同> < 同> < 同>

æ

Motivation Cuts and bonds Flows and circuits

Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition

Cut space of G is image of coboundary, im ∂^* , i.e., row-span of boundary [incidence] matrix.

Motivation Cuts and bonds Flows and circuits

Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition

Cut space of G is image of coboundary, im ∂^* , i.e., row-span of boundary [incidence] matrix.

Example

Sum of first two rows (∂^* of north shore) is supported on bond.

< A >

4 B N 4 B N

Motivation Cuts and bonds Flows and circuits

Cut space

The vertex star of every vertex is a cut; it is also the coboundary of that vertex.

Definition

Cut space of G is image of coboundary, im ∂^* , i.e., row-span of boundary [incidence] matrix.

Example

Sum of first two rows (∂^* of north shore) is supported on bond.

Question

What is a basis?

医下子 医下

Motivation Cuts and bonds Flows and circuits

Fundamental bond

Definition Given a spanning tree T

Duval, Klivans, Martin Cuts and flows in cell complexes

<ロ> <同> <同> < 同> < 同>

э

Motivation Cuts and bonds Flows and circuits

Fundamental bond

Definition

Given a spanning tree T and an edge $e \in T$, the fundamental bond is the unique bond containing e, and no other edge from T.

A 10

Motivation Cuts and bonds Flows and circuits

Fundamental bond

Definition

Given a spanning tree T and an edge $e \in T$, the fundamental bond is the unique bond containing e, and no other edge from T.

Theorem

For a fixed spanning tree, the collection of fundamental bonds forms a basis of cut space

Motivation Cuts and bonds Flows and circuits

Flows and circuits

Definition

A circuit is a closed path with no repeated vertices.

(a)

э

Motivation Cuts and bonds Flows and circuits

Flows and circuits

Definition

A circuit is a closed path with no repeated vertices.

In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define

< 17 ▶

(*) *) *) *)

-

Motivation Cuts and bonds Flows and circuits

Flows and circuits

Definition

A circuit is a closed path with no repeated vertices.

In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define

Definition

Flow space of G is kernel of boundary matrix

< A >

医下子 医下

Motivation Cuts and bonds Flows and circuits

Flows and circuits

Definition

A circuit is a closed path with no repeated vertices.

In matroid terms, a circuit is a minimal dependent set, and dependent sets are in kernel of boundary, so it is natural to define

Definition Flow space of G is kernel of boundary matrix

Question What is a basis?

< A >

医下子 医下

Motivation Cuts and bonds Flows and circuits

Fundamental circuit

Definition Given a spanning tree T

Duval, Klivans, Martin Cuts and flows in cell complexes

<ロ> <同> <同> < 同> < 同>

э

Motivation Cuts and bonds Flows and circuits

Fundamental circuit

Definition

Given a spanning tree T and an edge $e \notin T$, the fundamental circuit is the unique circuit in $T \cup \{e\}$.

< 17 ▶

A B + A B +

Motivation Cuts and bonds Flows and circuits

Fundamental circuit

Definition

Given a spanning tree T and an edge $e \notin T$, the fundamental circuit is the unique circuit in $T \cup \{e\}$.

Theorem

For a fixed spanning tree, the collection of fundamental circuits forms a basis of flow space

< A >

3 N

C<mark>ell complexes</mark> Cellular matroids Spanning forests

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions),

э

< 日 > < 同 > < 三 > < 三 >

C<mark>ell complexes</mark> Cellular matroids Spanning forests

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say *n* facets and *p* ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.

< 日 > < 同 > < 三 > < 三 >

C<mark>ell complexes</mark> Cellular matroids Spanning forests

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.

Think the boundary of each facet being a $\ensuremath{\mathbb{Z}}\xspace$ -linear combination of ridges.

Remark

Any $\mathbb Z$ matrix can be the boundary matrix of a cell complex

.

C<mark>ell complexes</mark> Cellular matroids Spanning forests

Examples

イロン イロン イヨン イヨン

æ

Cell complexes Cellular matroids Spanning forests

Cellular matroids

Matroid whose elements are columns of boundary matrix

< 17 ▶

Graphs Higher dimensions Cuts Flows Cell complexes Cellular matroids Spanning forests

Cellular matroids

- Matroid whose elements are columns of boundary matrix
- Dependent sets are the supports of the kernel of the boundary matrix

Graphs Higher dimensions Cuts Flows Cell complexes Cellular matroids Spanning forests

Cellular matroids

- Matroid whose elements are columns of boundary matrix
- Dependent sets are the supports of the kernel of the boundary matrix
- Bases?...

Cell complexes Cellular matroids Spanning forests

Spanning forests (Bolker; Kalai; DKM) A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that: $\Upsilon_{(d-1)} = X_{(d-1)}$ (same (d-1)-skeleton),

< 日 > < 同 > < 三 > < 三 >

э

Cell complexes Cellular matroids Spanning forests

Spanning forests (Bolker; Kalai; DKM) A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that: $\Upsilon_{(d-1)} = X_{(d-1)}$ (same (d-1)-skeleton), and $\blacktriangleright \tilde{H}_d(\Upsilon; \mathbb{Q}) = 0$ and $\tilde{H}_{d-1}(\Upsilon; \mathbb{Q}) = \tilde{H}_{d-1}(X; \mathbb{Q})$

< 日 > < 同 > < 三 > < 三 >

Cell complexes Cellular matroids Spanning forests

Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that:

$$\Upsilon_{(d-1)} = X_{(d-1)}$$
 (same $(d-1)$ -skeleton), and

•
$$\tilde{H}_d(\Upsilon; \mathbb{Q}) = 0$$
 and $\tilde{H}_{d-1}(\Upsilon; \mathbb{Q}) = \tilde{H}_{d-1}(X; \mathbb{Q})$

• Equivalently, $\{\partial F : F \in \Upsilon\}$ is a vector space basis for im ∂

< 日 > < 同 > < 三 > < 三 >

Cell complexes Cellular matroids Spanning forests

Spanning forests (Bolker; Kalai; DKM)

A Cellular spanning forest (CSF) is $\Upsilon \subset X$ such that:

$$\Upsilon_{(d-1)} = X_{(d-1)}$$
 (same $(d-1)$ -skeleton), and

•
$$\tilde{H}_d(\Upsilon;\mathbb{Q}) = 0$$
 and $\tilde{H}_{d-1}(\Upsilon;\mathbb{Q}) = \tilde{H}_{d-1}(X;\mathbb{Q})$

• Equivalently, $\{\partial F : F \in \Upsilon\}$ is a vector space basis for im ∂

Cut space and bonds Characteristic vectors Fundamental bonds

Cut space and bonds

Definition *i*-dimensional cut space of cell complex X is

$$\operatorname{Cut}_i(X) = \operatorname{im}(\partial_i^* : C_{i-1}(X, \mathbb{R}) \to C_i(X, \mathbb{R})).$$

Remark

Cut space is the rowspace of the boundary matrix.

< 日 > < 同 > < 三 > < 三 >

Cut space and bonds Characteristic vectors Fundamental bonds

Cut space and bonds

Definition

i-dimensional cut space of cell complex X is

$$\operatorname{Cut}_i(X) = \operatorname{im}(\partial_i^* : C_{i-1}(X, \mathbb{R}) \to C_i(X, \mathbb{R})).$$

A bond of X is a minimal set of *i*-faces that support non-0 vector of $Cut_i(X)$

Remark

Cut space is the rowspace of the boundary matrix.

Remark

Bonds are the cocircuits of cellular matroid

< A >

Topological interpretation of bonds

Remark

Bonds are minimal for increasing (i - 1)-dimensional homology instead of decreasing *i*-dimensional homology

Examples

Lut space and bonds Characteristic vectors Fundamental bonds

Characteristic vectors of bonds

Fix bond B

Proposition

$$Cut_B(X) := (\{0\} \cup (Cut_i(X) \cap \{v : supp(v) = B\}))$$
 is
1-dimensional

Example

э

(日) (同) (三) (三)

Lut space and bonds Characteristic vectors Fundamental bonds

Topological interpretation of characteristic vector

Example $a^{2}(3)$ $b^{5}(7)$ If $B = \{F_5, F_7\}$, then Cut_B spanned by $5F_5 + 7F_7$.

< A >

Cut space and bonds Characteristic vectors Fundamental bonds

Topological interpretation of characteristic vector

Topological interpretation of characteristic ve

²(3)
$$f B = \{F_5, F_7\}$$
, then Cut_B spanned by $5F_5 + 7F_7$.

Theorem (DKM)

Evampla

Let A be a cellular spanning forest of X/B. Then $Cut_B(X)$ is spanned by

$$\chi(B,A) := \sum_{F \in B} \pm |\tilde{H}(A \cup F, \mathbb{Z})|F$$

(日) (同) (三) (三)

Cut space and bonds Characteristic vectors Fundamental bonds

Topological interpretation of characteristic vector

Example

²(3)
$$f B = \{F_5, F_7\}$$
, then $\chi(B, F_2) = 2(5F_5 + 7F_7)$,
but $\chi(B, F_3) = 3(5F_5 + 7F_7)$.

Theorem (DKM)

Let A be a cellular spanning forest of X/B. Then $Cut_B(X)$ is spanned by

$$\chi(B,A) := \sum_{F \in B} \pm |\tilde{H}(A \cup F, \mathbb{Z})|F$$

Definition The characteristic vector of B is $\chi(B,A)$

4 B 6 4 B

Cut space and bonds Characteristic vectors Fundamental bonds

Fundamental bond

Definition

Given a spanning forest Υ and an face $F \in \Upsilon$, the fundamental bond is the unique bond containing F, and no other face from Υ .

Example

< A >

A 3 b

Cut space and bonds Characteristic vectors Fundamental bonds

Fundamental bond

Definition

Given a spanning forest Υ and an face $F \in \Upsilon$, the fundamental bond is the unique bond containing F, and no other face from Υ .

Example

Theorem (DKM)

For a fixed spanning forest, the collection of characteristic vectors of fundamental bonds forms a basis of cut space

Flow space and circuits Characteristic vectors Fundamental circuits

Flows and circuits

Definition *i*-dimensional flow space of cell complex X is

$$\mathsf{Flow}_i(X) = \mathsf{ker}(\partial_i : \mathcal{C}_{i-1}(X, \mathbb{R}) \to \mathcal{C}_{i-1}(X, \mathbb{R})).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Flow space and circuits Characteristic vectors Fundamental circuits

Flows and circuits

Definition i-dimensional flow space of cell complex X is

$$\mathsf{Flow}_i(X) = \mathsf{ker}(\partial_i : C_{i-1}(X, \mathbb{R}) \to C_{i-1}(X, \mathbb{R})).$$

A circuit of X is a minimal set of *i*-faces that support non-0 vector of $Flow_i(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

(日) (同) (三) (三)

Flow space and circuits Characteristic vectors Fundamental circuits

Flows and circuits

Definition i-dimensional flow space of cell complex X is

$$\mathsf{Flow}_i(X) = \mathsf{ker}(\partial_i : C_{i-1}(X, \mathbb{R}) \to C_{i-1}(X, \mathbb{R})).$$

A circuit of X is a minimal set of *i*-faces that support non-0 vector of $Flow_i(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

Example

Bipyramid

A B + A B +

low space and circuits Characteristic vectors Fundamental circuits

Characteristic vectors of circuits

Fix circuit C

Proposition $Flow_C(X) := (\{0\} \cup (Flow_i(X) \cap \{v : supp(v) = C\}))$ is 1-dimensional

Example Bipyramid

(日) (同) (三) (三)

э

Flow space and circuits Characteristic vectors Fundamental circuits

Topological interpretation of characteristic vector

Example

э

low space and circuits Characteristic vectors Fundamental circuits

Topological interpretation of characteristic vector

Example

$$\begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
 1 $\begin{pmatrix} 0 \\ -2 \\ 2 \\ -1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 0 \\ -2 \\ -2 \\ 0 \end{pmatrix}$;

Theorem (DKM)

$$\chi(C) = \sum_{F \in C} \pm |\mathbf{T} \widetilde{H}(C \setminus F, \mathbb{Z})|F$$

spans $Cut_C(X)$, where **T** stands for torsion part.

- 4 同 6 4 日 6 4 日 6

Flow space and circuits Characteristic vectors Fundamental circuits

Topological interpretation of characteristic vector

Example

$$\begin{pmatrix} 2 \\ 2 \\ 2 \\ -1 \\ -1 \\ 2 \\ 0 \end{pmatrix}^{1} \begin{pmatrix} 0 \\ -2 \\ -2 \\ -2 \\ -2 \\ 0 \end{pmatrix}; \tilde{H}(C \setminus F_{1}) = \mathbb{Z} \oplus (\mathbb{Z}_{2} \oplus \mathbb{Z}_{2});$$

Theorem (DKM)

$$\chi(C) = \sum_{F \in C} \pm |\mathbf{T} \widetilde{H}(C \setminus F, \mathbb{Z})|F$$

spans $Cut_C(X)$, where **T** stands for torsion part.

- 4 同 6 4 日 6 4 日 6

Flow space and circuits Characteristic vectors Fundamental circuits

Topological interpretation of characteristic vector

Example

$$\begin{pmatrix} 2 \\ 2 \\ 2 \\ -1 \\ -1 \\ 2 \\ 0 \end{pmatrix}^{1} \begin{pmatrix} 0 & -2 & 2 \\ -2 \\ -1 \\ 2 \\ 0 \\ \end{pmatrix}; \tilde{H}(C \setminus F_{1}) = \mathbb{Z} \oplus (\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}); \chi(C) = (4, 2, 2)$$

Theorem (DKM)

$$\chi(C) = \sum_{F \in C} \pm |\mathbf{T} \widetilde{H}(C \setminus F, \mathbb{Z})|F$$

spans $Cut_C(X)$, where **T** stands for torsion part.

Definition The characteristic vector of C is $\chi(C)$

< □ > < 同 >

★ ∃ >

Flow space and circuits Characteristic vectors Fundamental circuits

Fundamental circuit

Definition

Given a spanning forest Υ and an face $F \notin \Upsilon$, the fundamental circuit is the unique circuit in $\Upsilon \cup \{F\}$.

Example

< 17 ▶

A 3 b

Flow space and circuits Characteristic vectors Fundamental circuits

Fundamental circuit

Definition

Given a spanning forest Υ and an face $F \notin \Upsilon$, the fundamental circuit is the unique circuit in $\Upsilon \cup \{F\}$.

Example

3	$\Upsilon = \{124, 134, 123, 135, 235\}$	
	F	С
	234	$\{123, 124, 134, 234\}$
1	235	$\{123, 125, 135, 235\}$
5		

Theorem (DKM)

For a fixed spanning forest, the collection of characteristic vectors of fundamental circuits forms a basis of flow space

ロト ・ 同ト ・ ヨト ・ ヨト