# Weighted spanning tree enumerators of complete colorful complexes 

Ghodratollah Aalipour ${ }^{1,2}$ Art Duval ${ }^{1}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ Sharif University of Technology

CombinaTexas
University of Houston - Downtown
April 21, 2013

## Spanning trees of $K_{n}$

Theorem (Cayley)
$K_{n}$ has $n^{n-2}$ spanning trees.
$T \subseteq E(G)$ is a spanning tree of $G$ when:
0 . spanning: $T$ contains all vertices;

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. correct count: $|T|=n-1$

If 0 . holds, then any two of 1., 2., 3. together imply the third condition.

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2},
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.

Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example ( $K_{4}$ )

## Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} w t T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2},
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example ( $K_{4}$ )
-4 trees like: $T=2 \downarrow$ wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}$

## Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} w t T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2},
$$

where wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$.
Example ( $K_{4}$ )

- 4 trees like: $T=$


$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2$. 4

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}
$$

## Theorem (Cayley-Prüfer)

$$
\sum_{T \in S T\left(K_{n}\right)} \text { wt } T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2},
$$

$$
\text { where wt } T=\prod_{e \in T} \text { wt } e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)
$$

Example ( $K_{4}$ )

- 4 trees like: $T=2 \square .4$

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2$ ? $\quad$ wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}$
- Total is $\left(x_{1} x_{2} x_{3} x_{4}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}$.


## Complete bipartite graphs

Example ( $K_{3,2}$ )

## Complete bipartite graphs

Example ( $K_{3,2}$ )

- 6 trees like: $T=$


$$
\text { wt } T=(12312) 12^{2}
$$

## Complete bipartite graphs

Example ( $K_{3,2}$ )

- 6 trees like: $T=$


$$
\text { wt } T=(12312) 12^{2}
$$

- 6 trees like: $T=$

wt $T=(12312) 212$


## Complete bipartite graphs

Example ( $K_{3,2}$ )

- 6 trees like: $T=$

- Total is $(12312)(1+2+3)(1+2)^{2}$.


## Complete bipartite graphs

Example ( $K_{3,2}$ )

- 6 trees like: $T=$

- Total is $(12312)(1+2+3)(1+2)^{2}$.

Theorem

$$
\sum_{T \in S T\left(K_{m, n}\right)} \text { wt } T=\left(x_{1} \cdots x_{m}\right)\left(y_{1} \cdots y_{n}\right)\left(x_{1}+\cdots+x_{m}\right)^{n-1}\left(y_{1}+\cdots+y_{n}\right)^{m-1} .
$$

## Laplacian

Theorem (Kirchoff's Matrix-Tree)
$G$ has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees
Definition The Laplacian matrix of graph $G$, denoted by
$L(G)$.

## Laplacian

Theorem (Kirchoff's Matrix-Tree)
$G$ has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees
Definition The Laplacian matrix of graph $G$, denoted by
$L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

## Laplacian

Theorem (Kirchoff's Matrix-Tree)
$G$ has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees
Definition The Laplacian matrix of graph G, denoted by
$L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

## Laplacian

Theorem (Kirchoff's Matrix-Tree)
$G$ has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees
Definition The reduced Laplacian matrix of graph G, denoted by $L_{r}(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

"Reduced": remove rows/columns corresponding to any one vertex

## Example $\left(K_{3,2}\right)$

$$
\begin{aligned}
& L=\left(\begin{array}{cc|cccccc}
1 & 11 & 12 & 21 & 22 & 31 & 32 \\
\hline & & -1 & -1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & -1 & -1 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & -1 & -1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 2 & 0 & -1 & -1 \\
0 & 0 & 2 & -1 & -1 \\
-1 & -1 & -1 & 3 & 0 \\
-1 & -1 & -1 & 0 & 3
\end{array}\right)
\end{aligned}
$$

## Example $\left(K_{3,2}\right)$

$$
\begin{aligned}
& L=\left(\begin{array}{cc|cccccc}
1 & 11 & 12 & 21 & 22 & 31 & 32 \\
\hline & 1 & -1 & -1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & -1 & -1 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & -1 & -1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right. \\
& \left.\begin{array}{ccccc}
2 & 0 & 0 & -1 & -1 \\
0 & 2 & 0 & -1 & -1 \\
0 & 0 & 2 & -1 & -1 \\
-1 & -1 & -1 & 3 & 0 \\
-1 & -1 & -1 & 0 & 3
\end{array}\right) \quad L_{r}=\left(\begin{array}{cccc}
2 & 0 & -1 & -1 \\
0 & 2 & -1 & -1 \\
-1 & -1 & 3 & 0 \\
-1 & -1 & 0 & 3
\end{array}\right)
\end{aligned}
$$

## Example $\left(K_{3,2}\right)$

$$
\begin{aligned}
& L=\left(\begin{array}{cc|cccccc}
1 & 11 & 12 & 21 & 22 & 31 & 32 \\
\hline & & -1 & -1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & -1 & -1 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & -1 & -1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right. \\
& \left.\begin{array}{ccccc}
2 & 0 & 0 & -1 & -1 \\
0 & 2 & 0 & -1 & -1 \\
0 & 0 & 2 & -1 & -1 \\
-1 & -1 & -1 & 3 & 0 \\
-1 & -1 & -1 & 0 & 3
\end{array}\right) \quad L_{r}=\left(\begin{array}{cccc}
2 & 0 & -1 & -1 \\
0 & 2 & -1 & -1 \\
-1 & -1 & 3 & 0 \\
-1 & -1 & 0 & 3
\end{array}\right)
\end{aligned}
$$

$\operatorname{det}\left(L_{r}\right)=12$, the number of spanning trees of $K_{3,2}$.

## Weighted Matrix-Tree Theorem

$$
\sum_{T \in S T(G)} \text { wt } T=\left|\operatorname{det} \hat{L}_{r}(G)\right|
$$

where $\hat{L}_{r}(G)$ is reduced weighted Laplacian.
Defn 1: $\hat{L}(G)=\hat{D}(G)-\hat{A}(G)$

$$
\begin{aligned}
& \hat{D}(G)=\operatorname{diag}\left(\hat{\operatorname{deg}} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& \hat{\operatorname{deg} v_{i}}=\sum_{v_{i} v_{j} \in E} x_{i} x_{j} \\
& \hat{A}(G)=\operatorname{adjacency} \text { matrix } \\
& \left(\text { entry } x_{i} x_{j} \text { for edge } v_{i} v_{j}\right)
\end{aligned}
$$

Defn 2: $\hat{L}(G)=\partial(G) B(G) \partial(G)^{T}$
$\partial(G)=$ incidence matrix
$B(G)$ diagonal, indexed by edges,
entry $\pm x_{i} x_{j}$ for edge $v_{i} v_{j}$

## Example $\left(K_{3,2}\right)$



$$
\begin{gathered}
\hat{L}_{r}=\left(\begin{array}{cccc}
2(1+2) & 0 & -21 & -22 \\
0 & 3(1+2) & -31 & -32 \\
-21 & -31 & 1(1+2+3) & 0 \\
-22 & -32 & 0 & 2(1+2+3)
\end{array}\right) \\
\operatorname{det} \hat{L}_{r}=(12312)(1+2+3)(1+2)^{2}
\end{gathered}
$$

## Simplicial spanning trees of $K_{n}^{d}$ [Kalai, '83]

Let $K_{n}^{d}$ denote the complete $d$-dimensional simplicial complex on $n$ vertices. $\Upsilon \subseteq K_{n}^{d}$ is a simplicial spanning tree of $K_{n}^{d}$ when:
0. $\Upsilon_{(d-1)}=K_{n}^{d-1}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $|\Upsilon|=\binom{n-1}{d}($ "count" $)$.

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $d=1$, coincides with usual definition.


## Counting simplicial spanning trees of $K_{n}^{d}$

Conjecture [Bolker '76]

$$
=n^{\binom{n-2}{d}}
$$

## Counting simplicial spanning trees of $K_{n}^{d}$

Theorem [Kalai '83]

$$
\tau\left(K_{n}^{d}\right)=\sum_{\Upsilon \in S S T\left(K_{n}^{d}\right)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=n^{\left(n_{d}-2\right)}
$$

## Weighted simplicial spanning trees of $K_{n}^{d}$

As before,

$$
\mathrm{wt} \Upsilon=\prod_{F \in \Upsilon} \text { wt } F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example

$$
\begin{aligned}
& \Upsilon=\{123,124,125,134,135,245\} \\
& w t \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{aligned}
$$

## Weighted simplicial spanning trees of $K_{n}^{d}$

As before,

$$
\text { wt } \Upsilon=\prod_{F \in \Upsilon} \text { wt } F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example

$$
\begin{aligned}
& \Upsilon=\{123,124,125,134,135,245\} \\
& w t \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{aligned}
$$

Theorem (Kalai, '83)

$$
\begin{aligned}
\hat{\tau}\left(K_{n}^{d}\right) & :=\sum_{T \in S S T\left(K_{n}^{d}\right)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}(w t \Upsilon) \\
& =\left(x_{1} \cdots x_{n}\right)^{\binom{n-2}{d-1}}\left(x_{1}+\cdots+x_{n}\right)^{\binom{n-2}{d}}
\end{aligned}
$$

## Proof

Proof uses determinant of reduced Laplacian of $K_{n}^{d}$. "Reduced" now means pick one vertex, and then remove rows/columns corresponding to all ( $d-1$ )-dimensional faces containing that vertex.
$L=\partial \partial^{T}$
$\partial: \Delta_{d} \rightarrow \Delta_{d-1}$ boundary
$\partial^{T}: \Delta_{d-1} \rightarrow \Delta_{d}$ coboundary
Weighted version: Multiply column $F$ of $\partial$ by $x_{F}$

## Example $n=4, d=2$ (tetrahedron)

$\operatorname{det} L_{r}=4$

## Simplicial spanning trees of arbitrary simplicial complexes

Let $\Delta$ be a $d$-dimensional simplicial complex.
$\Upsilon \subseteq \Delta$ is a simplicial spanning tree of $\Delta$ when:
0. $\Upsilon_{(d-1)}=\Delta_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(\Upsilon)=f_{d}(\Delta)-\tilde{\beta}_{d}(\Delta)+\tilde{\beta}_{d-1}(\Delta)$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $d=1$, coincides with usual definition.


## Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, '09)

$$
\hat{\tau}(\Delta)=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \hat{L}_{\Gamma},
$$

where

- $\Gamma \in \operatorname{SST}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of $\partial_{d}$ to faces not in $\Gamma$
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial^{T}{ }_{\Gamma}$
- Weighted version: Multiply column F of $\partial$ by $x_{F}$

Note: The $\left|\tilde{H}_{d-2}\right|$ terms are often trivial.

## Example: Octahedron

- Vertices 1, 2, 1, 2, 1, 2.
- Facets $111,112,121,122,211,212,221,222$,
- $\Gamma=11,12,11,12,22$ spanning tree of 1 -skeleton, so remove (rows and columns corresponding to) those edges from weighted Laplacian.
- $\operatorname{det} \hat{L}_{\Gamma}=(121212)^{3}(1+2)(1+2)(1+2)$.


## Complete colorful complexes

Definition (Adin, '92)
The complete colorful complex $K_{n_{1}, \ldots, n_{r}}$ is a simplicial complex with:

- vertex set $V_{1} \dot{U} \ldots \dot{U} V_{r}$ ( $V_{i}$ is set of vertices of color $i$ );
- $\left|V_{i}\right|=n_{i}$;
- faces are all sets of vertices with no repeated colors.

Example
Octahedron is $K_{222}$.

## Unweighted enumeration

Theorem (Adin, '92)
The top-dimensional spanning trees of $K_{n_{1}, \ldots, n_{r}}$ are "counted" by

$$
\tau\left(K_{n_{1}, \ldots, n_{r}}\right)=\prod_{i=1}^{r} n_{i}^{\prod_{j \neq i}\left(n_{j}-1\right)} .
$$

Note: Adin also has a more general formula for dimension less than $r-1$.

Example

- $\tau\left(K_{222}\right)=2^{1} \times 2^{1} \times 2^{1}$
- $\tau\left(K_{235}\right)=2^{2 \cdot 4} \times 3^{1 \cdot 4} \times 5^{1 \cdot 2}$
- $\tau\left(K_{m, n}\right)=m^{n-1} \times n^{m-1}$


## Weighted enumeration

Theorem (Aalipour-D.)
The top-dimensional spanning trees of $K_{n_{1}, \ldots, n_{r}}$ are "counted" by $\tau\left(K_{n_{1}, \ldots, n_{r}}\right)=$

$$
\prod_{i=1}^{r}\left(x_{i, 1}+\cdots+x_{i, n_{i}}\right)^{\prod_{j \neq i}\left(n_{j}-1\right)}\left(x_{i, 1} \cdots x_{i, n_{i}}\right)^{\left(\prod_{j \neq i} n_{j}\right)-\left(\prod_{j \neq i}\left(n_{j}-1\right)\right)}
$$

Example

$$
\begin{aligned}
\hat{\tau}\left(K_{235}\right)= & \left(x_{1}+x_{2}\right)^{2 \cdot 4}\left(x_{1} x_{2}\right)^{3 \cdot 5-2 \cdot 4} \\
& \times\left(y_{1}+y_{2}+y_{3}\right)^{1 \cdot 4}\left(y_{1} y_{2} y_{3}\right)^{2 \cdot 5-1 \cdot 4} \\
& \times\left(z_{1}+\cdots+z_{5}\right)^{1 \cdot 2}\left(z_{1} \cdots z_{5}\right)^{2 \cdot 3-1 \cdot 2}
\end{aligned}
$$

## Proof (via example $K_{3,2}$ )

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{cccc}
2(1+2) & 0 & -21 & -22 \\
0 & 3(1+2) & -31 & -32 \\
-21 & -31 & 1(1+2+3) & 0 \\
-22 & -32 & 0 & 2(1+2+3)
\end{array}\right) \\
2312 \operatorname{det}\left(\begin{array}{cccc}
1+2 & 0 & -1 & -2 \\
0 & 1+2 & -1 & -2 \\
-2 & -3 & 1+2+3 & 0 \\
-2 & -3 & 0 & 1+2+3
\end{array}\right)
\end{gathered}
$$

By "identification of factors" (Martin-Reiner, '03), to show $(1+2)^{2}$ is a factor of the determinant, we just have to show that the nullspace of this matrix is at least 2 , when we set $1+2=0$.

## Finding null vectors

$$
\left(\begin{array}{cccc}
1+2 & 0 & -1 & -2 \\
0 & 1+2 & -1 & -2 \\
-2 & -3 & 1+2+3 & 0 \\
-2 & -3 & 0 & 1+2+3
\end{array}\right)
$$

## Finding null vectors

$$
\left(\begin{array}{cccc}
1+2 & 0 & -1 & -2 \\
0 & 1+2 & -1 & -2 \\
-2 & -3 & 1+2+3 & 0 \\
-2 & -3 & 0 & 1+2+3
\end{array}\right)
$$

Since we removed 2 more rows than columns, nullity is at least 2 .

## Finding null vectors

$$
\left(\begin{array}{cccc}
1+2 & 0 & -1 & -2 \\
0 & 1+2 & -1 & -2 \\
-2 & -3 & 1+2+3 & 0 \\
-2 & -3 & 0 & 1+2+3
\end{array}\right)
$$

Since we removed 2 more rows than columns, nullity is at least 2 . Any null vector $(a, b, c)$ of $1 \times 3$ matrix gives null vector $(a, b, c, c)$ of $4 \times 4$ matrix. (Remember $1+2=0$.)

## Finding null vectors

$$
\left(\begin{array}{cccc}
1+2 & 0 & -1 & -2 \\
0 & 1+2 & -1 & -2 \\
-2 & -3 & 1+2+3 & 0 \\
-2 & -3 & 0 & 1+2+3
\end{array}\right)
$$

Since we removed 2 more rows than columns, nullity is at least 2 . Any null vector ( $a, b, c$ ) of $1 \times 3$ matrix gives null vector ( $a, b, c, c$ ) of $4 \times 4$ matrix. (Remember $1+2=0$.)
We now have factors $12(1+2)^{2}$. To get the blue factors, now pick
1 as the vertex to be removed!

## Higher dimensions: Codimension-1 spanning tree (Adin)

We will use the weighted simplicial matrix-tree theorem. So first we have to find a codimension- 1 spanning tree. But it will be a different tree for each color. For each color's factors, treat that color as "last".

## Higher dimensions: Codimension-1 spanning tree (Adin)

We will use the weighted simplicial matrix-tree theorem. So first we have to find a codimension- 1 spanning tree. But it will be a different tree for each color. For each color's factors, treat that color as "last".
$r=3$ (1-dimensional spanning tree): Start with 1, and attach to every other vertex, except blue vertices. Then use 1 to connect the remaining blue vertices.

## Higher dimensions: Codimension-1 spanning tree (Adin)

We will use the weighted simplicial matrix-tree theorem. So first we have to find a codimension- 1 spanning tree. But it will be a different tree for each color. For each color's factors, treat that color as "last".
$r=3$ (1-dimensional spanning tree): Start with 1, and attach to every other vertex, except blue vertices. Then use 1 to connect the remaining blue vertices.
$r=4$ (2-dimensional spanning tree): Start with 1, and attach to every edge with no blue vertices. Then use 1 , and attach to all edges using a blue non-1 vertex with a non-red vertex. Finally use 1 with edges with a blue non-1 vertex with a red non-1 vertex.

## Continuing proof

The rest of the proof is similar to our $K_{3,2}$ computation:

- Reduce by the spanning tree


## Continuing proof

The rest of the proof is similar to our $K_{3,2}$ computation:

- Reduce by the spanning tree
- Factor out individual variables from the rows


## Continuing proof

The rest of the proof is similar to our $K_{3,2}$ computation:

- Reduce by the spanning tree
- Factor out individual variables from the rows
- Now apply identification of factors:


## Continuing proof

The rest of the proof is similar to our $K_{3,2}$ computation:

- Reduce by the spanning tree
- Factor out individual variables from the rows
- Now apply identification of factors:
- remove the rows containing variables of the last color (number of rows is degree of sum of variables of this color)


## Continuing proof

The rest of the proof is similar to our $K_{3,2}$ computation:

- Reduce by the spanning tree
- Factor out individual variables from the rows
- Now apply identification of factors:
- remove the rows containing variables of the last color (number of rows is degree of sum of variables of this color)
- remove "duplicate" rows and columns


## Continuing proof

The rest of the proof is similar to our $K_{3,2}$ computation:

- Reduce by the spanning tree
- Factor out individual variables from the rows
- Now apply identification of factors:
- remove the rows containing variables of the last color (number of rows is degree of sum of variables of this color)
- remove "duplicate" rows and columns
- null vectors of resulting matrix can be expanded to null vectors of full reduced matrix.

