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Spanning trees of Kn

Theorem (Cayley)

Kn has nn−2 spanning trees.

T ⊆ E (G ) is a spanning tree of G when:

0. spanning: T contains all vertices;

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. correct count: |T | = n − 1

If 0. holds, then any two of 1., 2., 3. together imply the third
condition.
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Counting trees
Matrix-tree theorem

Theorem (Cayley-Prüfer)∑
T∈ST (Kn)

wt T = (x1 · · · xn)(x1 + · · ·+ xn)n−2,

where wt T =
∏

e∈T wt e =
∏

e∈T (
∏

v∈e xv ).

Example (K4)

I 4 trees like: T =

r r
rr���
� 1

2

3

4 wt T = (x1x2x3x4)x2
2

I 12 trees like: T =

r r
rr
1

2

3

4 wt T = (x1x2x3x4)x1x3

I Total is (x1x2x3x4)(x1 + x2 + x3 + x4)2.
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Complete bipartite graphs

Example (K3,2)

I 6 trees like: T = �
�
�
�

��
��

H
HHH

@
@
@
@

r r
rrr
1

3

1

2

2

wt T = (12312)122

I 6 trees like: T = �
�
�
�@

@
@
@

��
��

H
HHH

r r
rrr
1

3

1

2

2

wt T = (12312)212

I Total is (12312)(1 + 2 + 3)(1 + 2)2.

Theorem∑
T∈ST (Km,n)

wt T = (x1 · · · xm)(y1 · · · yn)(x1 + · · ·+ xm)n−1(y1 + · · ·+ yn)m−1.
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Matrix-tree theorem

Laplacian

Theorem (Kirchoff’s Matrix-Tree)

G has | det Lr (G )| spanning trees

Definition The

reduced

Laplacian matrix of graph G , denoted by
L

r

(G ).

Defn 1: L(G ) = D(G )− A(G )

D(G ) = diag(deg v1, . . . , deg vn)

A(G ) = adjacency matrix

Defn 2: L(G ) = ∂(G )∂(G )T

∂(G ) = incidence matrix (boundary matrix)

“Reduced”: remove rows/columns corresponding to any one vertex
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Example (K3,2)

�
�
�
�

��
��

H
HHH

@
@
@
@

r r
rrr
1

3

1

2

2

∂ =

11 12 21 22 31 32

1 -1 -1 0 0 0 0
2 0 0 -1 -1 0 0
3 0 0 0 0 -1 -1
1 1 0 1 0 1 0
2 0 1 0 1 0 1

L =


2 0 0 − 1 − 1
0 2 0 −1 −1
0 0 2 −1 −1
− 1 −1 −1 3 0
− 1 −1 −1 0 3



Lr =


2 0 −1 −1
0 2 −1 −1
−1 −1 3 0
−1 −1 0 3


det(Lr ) = 12, the number of spanning trees of K3,2.
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Weighted Matrix-Tree Theorem

∑
T∈ST (G)

wt T = | det L̂r (G )|,

where L̂r (G ) is reduced weighted Laplacian.
Defn 1: L̂(G ) = D̂(G )− Â(G )

D̂(G ) = diag( ˆdegv1, . . . , ˆdegvn)
ˆdegvi =

∑
vivj∈E xixj

Â(G ) = adjacency matrix
(entry xixj for edge vivj)

Defn 2: L̂(G ) = ∂(G )B(G )∂(G )T

∂(G ) = incidence matrix
B(G ) diagonal, indexed by edges,
entry ±xixj for edge vivj
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Example (K3,2)

�
�
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��
��

H
HHH

@
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@

r r
rrr
1

3

1

2

2

L̂r =


2(1 + 2) 0 −21 −22

0 3(1 + 2) −31 −32
−21 −31 1(1 + 2 + 3) 0
−22 −32 0 2(1 + 2 + 3)


det L̂r = (12312)(1 + 2 + 3)(1 + 2)2
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Simplicial spanning trees of K d
n [Kalai, ’83]

Let Kd
n denote the complete d-dimensional simplicial complex on n

vertices. Υ ⊆ Kd
n is a simplicial spanning tree of Kd

n when:

0. Υ(d−1) = Kd−1
n (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. |Υ| =
(n−1

d

)
(“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Counting simplicial spanning trees of K d
n

Conjecture [Bolker ’76]

τ(Kd
n ) =

∑
Υ∈SST (Kd

n )

|H̃d−1(Υ)|2

= n(n−2
d )
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Weighted simplicial spanning trees of K d
n

As before,
wt Υ =

∏
F∈Υ

wt F =
∏
F∈Υ

(
∏
v∈F

xv )

Example

Υ = {123, 124, 125, 134, 135, 245}
wt Υ = x5

1 x4
2 x3

3 x3
4 x3

5

Theorem (Kalai, ’83)

τ̂(Kd
n ) :=

∑
T∈SST (Kd

n )

|H̃d−1(Υ)|2(wt Υ)

= (x1 · · · xn)(n−2
d−1)(x1 + · · ·+ xn)(n−2

d )
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Proof

Proof uses determinant of reduced Laplacian of Kd
n . “Reduced”

now means pick one vertex, and then remove rows/columns
corresponding to all (d − 1)-dimensional faces containing that
vertex.
L = ∂∂T

∂ : ∆d → ∆d−1 boundary
∂T : ∆d−1 → ∆d coboundary
Weighted version: Multiply column F of ∂ by xF
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Complete skeleton
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Example n = 4, d = 2 (tetrahedron)

∂T =

12 13 14 23 24 34

123 -1 1 0 -1 0 0
124 -1 0 1 0 -1 0
134 0 -1 1 0 0 -1
234 0 0 0 -1 1 -1

L =


2 −1 −1 1 1 0
−1 2 −1 −1 0 1
−1 −1 2 0 −1 −1
1 −1 0 2 −1 1
1 0 −1 −1 2 −1
0 1 −1 1 −1 2


detLr = 4
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Simplicial spanning trees of arbitrary simplicial complexes

Let ∆ be a d-dimensional simplicial complex.
Υ ⊆ ∆ is a simplicial spanning tree of ∆ when:

0. Υ(d−1) = ∆(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Simplicial Matrix-Tree Theorem

Theorem (D.-Klivans-Martin, ’09)

τ̂(∆) =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det L̂Γ,

where

I Γ ∈ SST (∆(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂
T

Γ

I Weighted version: Multiply column F of ∂ by xF

Note: The |H̃d−2| terms are often trivial.
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Complete skeleton
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Example: Octahedron

I Vertices 1, 2, 1, 2, 1, 2.

I Facets 111, 112, 121, 122, 211, 212, 221, 222,

I Γ = 11, 12, 11, 12, 22 spanning tree of 1-skeleton, so remove
(rows and columns corresponding to) those edges from
weighted Laplacian.

I det L̂Γ = (121212)3(1 + 2)(1 + 2)(1 + 2).

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of complete colorful complexes



Spanning trees of graphs
Spanning trees of simplicial complexes

Complete colorful complexes

Unweighted enumeration
Weighted enumeration

Complete colorful complexes

Definition (Adin, ’92)

The complete colorful complex Kn1,...,nr is a simplicial complex
with:

I vertex set V1∪̇ . . . ∪̇Vr (Vi is set of vertices of color i);

I |Vi | = ni ;

I faces are all sets of vertices with no repeated colors.

Example

Octahedron is K222.
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Unweighted enumeration

Theorem (Adin, ’92)

The top-dimensional spanning trees of Kn1,...,nr are “counted” by

τ(Kn1,...,nr ) =
r∏

i=1

n
Q

j 6=i (nj−1)

i .

Note: Adin also has a more general formula for dimension less than
r − 1.

Example

I τ(K222) = 21 × 21 × 21

I τ(K235) = 22·4 × 31·4 × 51·2

I τ(Km,n) = mn−1 × nm−1
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Weighted enumeration

Theorem (Aalipour-D.)

The top-dimensional spanning trees of Kn1,...,nr are “counted” by
τ(Kn1,...,nr ) =

r∏
i=1

(xi ,1 + · · ·+ xi ,ni
)

Q
j 6=i (nj−1)(xi ,1 · · · xi ,ni

)(
Q

j 6=i nj )−(
Q

j 6=i (nj−1)).

Example

τ̂(K235) = (x1 + x2)2·4(x1x2)3·5−2·4

× (y1 + y2 + y3)1·4(y1y2y3)2·5−1·4

× (z1 + · · ·+ z5)1·2(z1 · · · z5)2·3−1·2

Ghodratollah Aalipour, Art Duval Spanning tree enumerators of complete colorful complexes



Spanning trees of graphs
Spanning trees of simplicial complexes

Complete colorful complexes
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Proof (via example K3,2)

det


2(1 + 2) 0 −21 −22

0 3(1 + 2) −31 −32
−21 −31 1(1 + 2 + 3) 0
−22 −32 0 2(1 + 2 + 3)



2312 det


1 + 2 0 −1 −2

0 1 + 2 −1 −2
−2 −3 1 + 2 + 3 0
−2 −3 0 1 + 2 + 3


By “identification of factors” (Martin-Reiner, ’03), to show
(1 + 2)2 is a factor of the determinant, we just have to show that
the nullspace of this matrix is at least 2, when we set 1 + 2 = 0.
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Complete colorful complexes

Unweighted enumeration
Weighted enumeration

Finding null vectors


1 + 2 0 − 1 − 2

0 1 + 2 − 1 − 2
−2 −3 1 + 2 + 3 0
− 2 − 3 0 1 + 2 + 3



Since we removed 2 more rows than columns, nullity is at least 2.
Any null vector (a, b, c) of 1× 3 matrix gives null vector (a, b, c , c)
of 4× 4 matrix. (Remember 1 + 2 = 0.)
We now have factors 12(1 + 2)2. To get the blue factors, now pick
1 as the vertex to be removed!
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Higher dimensions: Codimension-1 spanning tree (Adin)

We will use the weighted simplicial matrix-tree theorem. So first
we have to find a codimension-1 spanning tree. But it will be a
different tree for each color. For each color’s factors, treat that
color as “last”.

r = 3 (1-dimensional spanning tree): Start with 1, and attach to
every other vertex, except blue vertices. Then use 1 to connect the
remaining blue vertices.
r = 4 (2-dimensional spanning tree): Start with 1, and attach to
every edge with no blue vertices. Then use 1, and attach to all
edges using a blue non-1 vertex with a non-red vertex. Finally use
1 with edges with a blue non-1 vertex with a red non-1 vertex.
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Continuing proof

The rest of the proof is similar to our K3,2 computation:

I Reduce by the spanning tree

I Factor out individual variables from the rows
I Now apply identification of factors:

I remove the rows containing variables of the last color (number
of rows is degree of sum of variables of this color)

I remove “duplicate” rows and columns
I null vectors of resulting matrix can be expanded to null vectors

of full reduced matrix.
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