Matroids and statistical dependency

Art Duval, Amy Wagler

University of Texas at El Paso

CombinaTexas Texas A&M University February 11, 2018

AD supported by Simons Foundation Grant 516801

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Can three variables be somehow (statistically) dependent, even when no two of them are?

Can three variables be somehow (statistically) dependent, even when no two of them are?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Yes. For instance, $Z = 1 + XY + \epsilon$.

- Can three variables be somehow (statistically) dependent, even when no two of them are?
- Yes. For instance, $Z = 1 + XY + \epsilon$.
- We might expect to get any sort of simplicial complex (subsets of independent sets are independent).

- Can three variables be somehow (statistically) dependent, even when no two of them are?
- Yes. For instance, $Z = 1 + XY + \epsilon$.
- We might expect to get any sort of simplicial complex (subsets of independent sets are independent).
- ► We can even get the Fano plane: A, B, C independent, D = AB, E = BC, F = CA, G = DEF.

If we are in a situation where set dependence gives us a matroid, this would be useful to statisticians in at least two ways:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If we are in a situation where set dependence gives us a matroid, this would be useful to statisticians in at least two ways:

- ► In regression modeling, matroid structures could be used as a variable selection procedure to find the most parsimonious set of X's to predict a Y. The results of the matroid circuits would also inform which interactions (x₁x₂ products) should be investigated for inclusion to the model.
- In big data settings, a matroid would identify maximally independent sets [bases] so that multiplicity can be corrected at the circuit level rather than the full data set.

If we are in a situation where set dependence gives us a matroid, this would be useful to statisticians in at least two ways:

- ► In regression modeling, matroid structures could be used as a variable selection procedure to find the most parsimonious set of X's to predict a Y. The results of the matroid circuits would also inform which interactions (x₁x₂ products) should be investigated for inclusion to the model.
- In big data settings, a matroid would identify maximally independent sets [bases] so that multiplicity can be corrected at the circuit level rather than the full data set.

So when does this happen?

A matroid on ground set E may be defined by closure axioms:

$$cl: 2^E \rightarrow 2^E$$

Closure axioms:

- $A \subseteq cl(A)$
- If $A \subseteq B$, then $cl(A) \subseteq cl(B)$
- cl(cl(A)) = cl(A)

▶ Exchange axiom: If $x \in cl(A \cup y) - cl(A)$, then $y \in cl(A \cup x)$

For us, $x \in cl(A)$ means that knowing the values of all the variables in A implies knowing something about the value of x. (Sort of: x is a function of A, with statistical noise and fuzziness.)

Invertibility

Exchange axiom: If $x \in cl(A \cup y) - cl(A)$, then $y \in cl(A \cup x)$

- x ∈ cl(A ∪ y) cl(A) means that in using A ∪ y to determine
 x, we must use (can't ignore) y. ("model parsimony")
- y ∈ cl(A∪x) means we can "solve" for y in terms of x and A. (This is sort of invertibility.)

Invertibility

Exchange axiom: If $x \in cl(A \cup y) - cl(A)$, then $y \in cl(A \cup x)$

- x ∈ cl(A ∪ y) cl(A) means that in using A ∪ y to determine
 x, we must use (can't ignore) y. ("model parsimony")
- y ∈ cl(A∪x) means we can "solve" for y in terms of x and A. (This is sort of invertibility.)

Easiest way for a function (only way for continuous function) to be invertible is to be monotone in each variable. Fortunately, implied by a common statistical assumption:

Definition (MTP₂)

(Multivariate Totally Positive of order 2.) $f(u)f(v) \leq f(u \wedge v)f(u \vee v)$, where f is probability distribution, u and v are vectors of variable values, and \wedge and \vee denote element-wise minimum and maximum.

Composition

Closure axioms

- $A \subseteq cl(A)$ (easy)
- If $A \subseteq B$, then $cl(A) \subseteq cl(B)$ (easy)

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

cl(cl(A)) = cl(A) (not so easy)

Composition

Closure axioms

- $A \subseteq cl(A)$ (easy)
- If $A \subseteq B$, then $cl(A) \subseteq cl(B)$ (easy)

Example

When A = x is a single element and $cl(x) = \{x, y\}$. We need to avoid $z \in cl\{x, y\}$ for $z \neq x, y$. In other words, z depends on y, and y depends on x should mean that z depends on x directly. This is a kind of transitivity.

Composition

Closure axioms

- $A \subseteq cl(A)$ (easy)
- If $A \subseteq B$, then $cl(A) \subseteq cl(B)$ (easy)

Example

When A = x is a single element and $cl(x) = \{x, y\}$. We need to avoid $z \in cl\{x, y\}$ for $z \neq x, y$. In other words, z depends on y, and y depends on x should mean that z depends on x directly. This is a kind of transitivity.

More generally, if Z is determined by Y_1, \ldots, Y_p , and each Y_i is determined by X_1, \ldots, X_q , then Z should be determined directly by X_1, \ldots, X_q . This is a kind of composition.

Remark

MTP₂ means the dependence will be strong enough to guarantee transitivity, and more generally composition.

How we actually show that we have a matroid. The dependent sets $\ensuremath{\mathcal{D}}$ in a matroid satisfy:

- $\blacktriangleright \ \emptyset \not\in \mathcal{D}$
- If $D \in \mathcal{D}$ and $D' \supseteq D$, then $D' \in \mathcal{D}$
- ▶ If $I \notin D$ but $I \cup x, I \cup y \in D$, then $(I z) \cup \{x, y\} \in D$ for all $z \in I$.

We can prove that MTP_2 distributions satisfy this, using results of Fallat et al. (using that MTP_2 is an upward-stable singleton-transitive compositional semigraphoid).

Non-matroid analysis: Clusters $\{1,3,4\},\ \{2,5,6,7,13\},\ \{8,9,11,12\},\ \{10\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\label{eq:non-matroid analysis: Clusters} $$\{1,3,4\}, \{2,5,6,7,13\}, \{8,9,11,12\}, \{10\}.$$$

Matroid analysis:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$\label{eq:non-matroid analysis: Clusters} $$\{1,3,4\}, \{2,5,6,7,13\}, \{8,9,11,12\}, \{10\}.$$$

Matroid analysis:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Non-matroid analysis: Clusters

 $\{1,3,4\},\ \{2,5,6,7,13\},\ \{8,9,11,12\},\ \{10\}.$

Matroid analysis:

Remark

This suggests two independent, possibly latent, variables explaining the left side of the diagram.