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Set dependence

I Can three variables be somehow (statistically) dependent,
even when no two of them are?

I Yes. For instance, Z = 1 + XY + ε.

I We might expect to get any sort of simplicial complex
(subsets of independent sets are independent).

I We can even get the Fano plane: A,B,C independent,
D = AB,E = BC ,F = CA,G = DEF .
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Matroids

If we are in a situation where set dependence gives us a matroid,
this would be useful to statisticians in at least two ways:

I In regression modeling, matroid structures could be used as a
variable selection procedure to find the most parsimonious set
of X ’s to predict a Y . The results of the matroid circuits
would also inform which interactions (x1x2 products) should
be investigated for inclusion to the model.

I In big data settings, a matroid would identify maximally
independent sets [bases] so that multiplicity can be corrected
at the circuit level rather than the full data set.

So when does this happen?
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Closure axioms

A matroid on ground set E may be defined by closure axioms:

cl : 2E → 2E

I Closure axioms:
I A ⊆ cl(A)
I If A ⊆ B, then cl(A) ⊆ cl(B)
I cl(cl(A)) = cl(A)

I Exchange axiom: If x ∈ cl(A ∪ y)− cl(A), then y ∈ cl(A ∪ x)

For us, x ∈ cl(A) means that knowing the values of all the
variables in A implies knowing something about the value of x .
(Sort of: x is a function of A, with statistical noise and fuzziness.)



Invertibility

Exchange axiom: If x ∈ cl(A ∪ y)− cl(A), then y ∈ cl(A ∪ x)

I x ∈ cl(A ∪ y)− cl(A) means that in using A ∪ y to determine
x , we must use (can’t ignore) y . (“model parsimony”)

I y ∈ cl(A∪ x) means we can “solve” for y in terms of x and A.
(This is sort of invertibility.)

Easiest way for a function (only way for continuous function) to be
invertible is to be monotone in each variable. Fortunately, implied
by a common statistical assumption:

Definition (MTP2)

(Multivariate Totally Positive of order 2.)
f (u)f (v) ≤ f (u ∧ v)f (u ∨ v), where f is probability distribution, u
and v are vectors of variable values, and ∧ and ∨ denote
element-wise minimum and maximum.
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Composition

Closure axioms

I A ⊆ cl(A) (easy)

I If A ⊆ B, then cl(A) ⊆ cl(B) (easy)

I cl(cl(A)) = cl(A) (not so easy)

Example

When A = x is a single element and cl(x) = {x , y}. We need to
avoid z ∈ cl{x , y} for z 6= x , y . In other words, z depends on y ,
and y depends on x should mean that z depends on x directly.
This is a kind of transitivity.

More generally, if Z is determined by Y1, . . . ,Yp, and each Yi is
determined by X1, . . . ,Xq, then Z should be determined directly by
X1, . . . ,Xq. This is a kind of composition.

Remark
MTP2 means the dependence will be strong enough to guarantee
transitivity, and more generally composition.
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Dependence axioms

How we actually show that we have a matroid. The dependent sets
D in a matroid satisfy:

I ∅ 6∈ D
I If D ∈ D and D ′ ⊇ D, then D ′ ∈ D
I If I 6∈ D but I ∪ x , I ∪ y ∈ D, then (I − z) ∪ {x , y} ∈ D for all

z ∈ I .

We can prove that MTP2 distributions satisfy this, using results of
Fallat et al. (using that MTP2 is an upward-stable
singleton-transitive compositional semigraphoid).



Example: Cancer genes

Non-matroid analysis: Clusters
{1, 3, 4}, {2, 5, 6, 7, 13}, {8, 9, 11, 12}, {10}.

Matroid analysis:

1 3 4 11
2 5 6 7 13

8 9 12

rank 2
⊕ 10

Remark
This suggests two independent, possibly latent, variables explaining
the left side of the diagram.
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