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Counting weighted spanning trees of Kn

Theorem [Cayley]: Kn has nn−2 spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. |T | = n − 1

Note: Any two conditions imply the third.

Weighting

vertices? Silly (nn−2(x1 · · · xn))

edges? No nice structure (can’t see nn−2)

both! wt T =
∏

e∈T wt e =
∏

e∈T (
∏

v∈e xv ) Prüfer coding∑
T∈ST (Kn)

wt T = (x1 · · · xn)(x1 + · · ·+ xn)n−2

Art Duval Combinatorial Laplacians



Graphs
Eigenvalues of shifted complexes and matroids

Spanning Trees
Cubical Complexes

Complete graph
Arbitrary graphs
Threshold graphs

Counting weighted spanning trees of Kn

Theorem [Cayley]: Kn has nn−2 spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. |T | = n − 1

Note: Any two conditions imply the third.
Weighting

vertices? Silly (nn−2(x1 · · · xn))

edges? No nice structure (can’t see nn−2)

both! wt T =
∏

e∈T wt e =
∏

e∈T (
∏

v∈e xv ) Prüfer coding∑
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Example: K4

I 4 trees like: T =

r r
rr���
� 1

2

3

4 wt T = (x1x2x3x4)x2
2

I 12 trees like: T =

r r
rr
1

2

3

4 wt T = (x1x2x3x4)x1x3

Total is (x1x2x3x4)(x1 + x2 + x3 + x4)2.
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Laplacian

Definition The

reduced

Laplacian matrix of graph G , denoted by
L

r

(G ).

Defn 1: L(G ) = D(G )− A(G )

D(G ) = diag(deg v1, . . . , deg vn)

A(G ) = adjacency matrix

Defn 2: L(G ) = ∂(G )∂(G )T

∂(G ) = incidence matrix (boundary matrix)

“Reduced”: remove rows/columns corresponding to any one vertex
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Example

r r
rr���

� 1

2

3

4 ∂ =

12 13 14 23 24

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2
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Matrix-Tree Theorems

Version I Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then G
has

λ1λ2 · · ·λn−1

n

spanning trees.
Version II G has | det Lr (G )| spanning trees
Proof [Version II]

det Lr (G ) = det ∂r (G )∂r (G )T =
∑
T

(det ∂r (T ))2

=
∑
T

(±1)2

by Binet-Cauchy
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Weighted Matrix-Tree Theorem∑
T∈ST (G)

wt T = | det L̂r (G )|,

where L̂ is weighted Laplacian.
Defn 1: L̂(G ) = D̂(G )− Â(G )

D̂(G ) = diag( ˆdegv1, . . . , ˆdegvn)
ˆdegvi =

∑
vivj∈E xixj

Â(G ) = adjacency matrix
(entry xixj for edge vivj)

Defn 2: L̂(G ) = ∂(G )B(G )∂(G )T

∂(G ) = incidence matrix
B(G ) diagonal, indexed by edges,
entry ±xixj for edge vivj
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r r
rr���

� 1

2

3

4

L̂ =


1(2 + 3 + 4) −12 −13 −14
−12 2(1 + 3 + 4) −23 −24
−13 −23 3(1 + 2) 0
−14 −24 0 4(1 + 2)


det L̂r = (1234)(1 + 2)(1 + 2 + 3 + 4)
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Threshold graphs

I Vertices 1, . . . , n

I E ∈ E , i 6∈ E , j ∈ E , i < j ⇒ E − j ∪ i ∈ E .

I Equivalently, the edges form an initial ideal in the
componentwise partial order.

Example

r r
rr���

� 1

2

3

4

12

��

HH��

23 14

13

24

34

HH
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Eigenvalues of threshold graphs

Theorem [Merris ’94] Eigenvalues are given by the transpose of
the Ferrers diagram of the degree sequence d .

r r
rr���

� 1

2

3

4

1

2

3

4

Corollary
∏

r 6=1(dT )r spanning trees
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Grone-Merris Conjecture

Conjecture (Grone-Merris ’94)

s E dT

λ1 ≤ (dT )1 = n

λ1 + λ2 ≤ (dT )1 + (dT )2

...

Progress:

I 1st and last inequalities are easy and trivial, respectively
I 2nd inequality

DR ’02 and tedious Mathematica
Katz ’05 using analysis

I whole conjecture holds for trees [Stephen ’07]
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Weighted spanning trees of threshold graphs
Theorem [Martin-Reiner ‘03; implied by Remmel-Williamson ‘02]:
If G is threshold, then

∑
T∈ST (G)

wt T = (x1 · · · xn)
∏
r 6=1

(

(dT )r∑
i=1

xi ).

Example

r r
rr���

� 1

2

3

4

1

2

3

4

(1234)(1 + 2)(1 + 2 + 3 + 4)
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Laplacians of simplicial complexes
Shifted complexes
Matroids
Spectral recursion

Laplacian

Simplicial complex Σ ⊆ 2V ; F ⊆ G ∈ Σ⇒ F ∈ Σ.

(simplicial) Laplacian ((k − 1)-dimensional, up-down)
Lk(Σ) = ∂k(Σ)∂k(Σ)T

boundary matrix ∂k : Σk → Σk−1

coboundary matrix ∂k
T : Σk−1 → Σk
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Example: Boundary of tetrahedron

∂T =

12 13 14 23 24 34

123 -1 1 0 -1 0 0
124 -1 0 1 0 -1 0
134 0 -1 1 0 0 -1
234 0 0 0 -1 1 -1

L =


2 −1 −1 1 1 0
−1 2 −1 −1 0 1
−1 −1 2 0 −1 −1
1 −1 0 2 −1 1
1 0 −1 −1 2 −1
0 1 −1 1 −1 2
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Shifted complexes

I Vertices 1, . . . , n

I F ∈ Σ, i 6∈ F , j ∈ F , i < j ⇒ F − j ∪ i ∈ Σ

I Equivalently, the k-faces form an initial ideal in the
componentwise partial order.

I Example (bipyramid with equator)
〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3
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Hasse diagram

124

125 134

126 135 234

145 235136

123

245236146
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Eigenvalues

Definition di is the i-dimensional degree sequence
(di )j = # i-faces containing vertex j .
Example
123 134 234
124 135 235
125 136 236
126 145

8
7
7
4
4
3

6 6 6 5 3 3 3 1 0 0 0

Theorem (DR ’02): If a simplicial complex is shifted, then
Laplacian eigenvalues given by (di )

T in every dimension i .

Open Question

Grone-Merris for simplicial complexes??
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Matroids

I ground set E = {1, . . . , n}
I Bases B: collection of k-subsets of E satisfying:
∀B ∈ B, ∀b ∈ B, ∀B ′ ∈ B, ∃b′ ∈ B ′ such that

(B − b) ∪ b′ ∈ B.

Example (graphical matroid: bases are spanning trees)

A
A
A
A
u

u uu
u
�
�
�
�

A
A
A
A

�
�
�
�

1 7

4

2 6

5
3 B =

1346 2346 1246 1456 1467
1347 2347 1247 1457 2467
1356 2356 1256 2456
1357 2357 1257 2457
1367 2367 1267

The simplicial complex formed by taking all subsets of every base
B ∈ B is the set of independent sets IN(M) of matroid M.
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Matroids

I ground set E = {1, . . . , n}
I Bases B: collection of k-subsets of E satisfying:
∀B ∈ B, ∀b ∈ B, ∀B ′ ∈ B, ∃b′ ∈ B ′ such that
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Eigenvalues of Matroids

For matroids, eigenvalues are more easily described in terms of
natural generating function:

SM(t, q) :=
∑

i

t i
∑

λ∈s(Li−1(IN(M)))

qλ

Theorem [Kook-Reiner-Stanton ’00]: For a matroid M with
ground set E ,

SM(t, q) = q|E |
∑

I∈IN(M)

trank(Ī )(q−1)|π̄(I )|,

where π̄(I ) is a function of I involving internal/external activity.
In particular, the eigenvalues of M are integers.
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Spectral recursion for matroids. . .
Tutte polynomial deletion-contraction recursion:

TM = TM−e + TM/e

B(M − e) = {B ∈ B : e 6∈ B} (r = r(M))

B(M/e) = {B − e : B ∈ B, e ∈ B} (r = r(M)− 1)

Theorem [Kook ’04]:
SM = qSM−e + qtSM/e + (1− q)(error term).
Conjecture [Kook-Reiner]: error term = S(M−e,M/e), where
(M − e,M/e) = (IN(M − e), IN(M/e)).
Theorem [D ’05]: This is true, i.e.,

SM = qSM−e + qtSM/e + (1− q)S(M−e,M/e).
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. . . and for shifted complexes

Generalize deletion and contraction to arbitrary simplicial complex
∆.

∆− e = {F ∈ ∆: e 6∈ F}
∆/e = {F − e : F ∈ ∆, e ∈ F} = lk∆ e

S∆(t, q) :=
∑

i

t i
∑

λ∈s(Li−1(∆))

qλ

Theorem [D ’05]: Spectral recursion holds for shifted complexes
∆:

S∆ = qS∆−e + qtS∆/e + (1− q)S(∆−e,∆/e).
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A common generalization of shifted complexes and
matroids?

Open Question

What is the common generalization of shifted complexes and
matroid independence complexes:

I integral Laplacian eigenvalues

I satisfying “spectral recursion”

Note that proofs of spectral recursion are completely different for
matroids and shifted complexes.
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Eigenvalues of shifted pairs
Definition Fix k. Let ∆′ ⊆ ∆ be simplicial complexes. Then

dj(∆k ,∆
′
k−1) = {F ∈ ∆k : F − j 6∈ ∆′k−1},

and d(∆k ,∆
′
k−1) = (d1, . . . , dn).
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�
��
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QQ

Q
QQ

Q
QQ

Q
QQ

123 124 234 134 145 125 235 135 126 236 136

24 34 45 35 26 16 3625
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Theorem [D ’05]: Eigenvalues of (∆k ,∆
′
k−1) equal

d(∆k ,∆
′
k−1)T .
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Complete skeleta of simplicial complexes

Simplicial complex Σ ⊆ 2V ;
F ⊆ G ∈ Σ⇒ F ∈ Σ.

Complete skeleton The k-dimensional complete complex on n
vertices, i.e.,

K k
n = {F ⊆ V : |F | ≤ k + 1}

(so Kn = K 1
n ).
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Simplicial spanning trees of K k
n [Kalai, ’83]

Υ ⊆ K k
n is a simplicial spanning tree of K k

n when:

0. Υ(k−1) = K k−1
n (“spanning”);

1. H̃k−1(Υ; Z) is a finite group (“connected”);

2. H̃k(Υ; Z) = 0 (“acyclic”);

3. |Υ| =
(n−1

k

)
(“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When k = 1, coincides with usual definition.
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Counting simplicial spanning trees of K k
n

Conjecture [Bolker ’76]∑
Υ∈SST (K k

n )

|H̃k−1(Υ)|2

= n(n−2
k )
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Counting simplicial spanning trees of K k
n

Theorem [Kalai ’83]∑
Υ∈SST (K k

n )

|H̃k−1(Υ)|2 = n(n−2
k )
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Weighted simplicial spanning trees of K k
n

As before,
wt Υ =

∏
F∈Υ

wt F =
∏
F∈Υ

(
∏
v∈F

xv )

Example:
Υ = {123, 124, 125, 134, 135, 245}

wt Υ = x5
1 x4

2 x3
3 x3

4 x3
5

Theorem [Kalai, ’83]∑
Υ∈SST (Kn)

|H̃k−1(Υ)|2(wt Υ) = (x1 · · · xn)(n−2
k−1)(x1 + · · ·+ xn)(n−2

k )

(Adin (’92) did something similar for complete r -partite
complexes.)
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Proof

Proof uses determinant of reduced Laplacian of K k
n . “Reduced”

now means pick one vertex, and then remove rows/columns
corresponding to all (k − 1)-dimensional faces containing that
vertex.
L = ∂∂T

∂ : ∆k → ∆k−1 boundary
∂T : ∆k−1 → ∆k coboundary
Weighted version: Multiply column F of ∂ by xF

Art Duval Combinatorial Laplacians



Graphs
Eigenvalues of shifted complexes and matroids

Spanning Trees
Cubical Complexes

Complete skeleta
Arbitrary simplicial complexes
Shifted complexes
Matroids?

Simplicial spanning trees of arbitrary simplicial complexes

Let Σ be a d-dimensional simplicial complex.
Υ ⊆ Σ is a simplicial spanning tree of Σ when:

0. Υ(d−1) = Σ(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(Σ)− β̃d(Σ) + β̃d−1(Σ) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Example

Bipyramid with equator, 〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3

I 3 + 3 SST’s not containing face 123

I 3× 3 SST’s containing face 123

Total is (x1x2x3)3(x4x5)2(x1 + x2 + x3)(x1 + x2 + x3 + x4 + x5).
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Simplicial Matrix-Tree Theorem — Version I

I Σ a d-dimensional “metaconnected” simplicial complex

I (d − 1)-dimensional (up-down) Laplacian Ld−1 = ∂d−1∂
T
d−1

I sd = product of nonzero eigenvalues of Ld−1.

Theorem [DKM ’09]

hd :=
∑

Υ∈SST (Σ)

|H̃d−1(Υ)|2 =
sd

hd−1
|H̃d−2(Σ)|2
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Simplicial Matrix-Tree Theorem — Version II

I Γ ∈ SST (Σ(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂
∗
Γ

Theorem [DKM ’09]

hd =
∑

Υ∈SST (Σ)

|H̃d−1(Υ)|2 =
|H̃d−2(Σ; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.

Note: The |H̃d−2| terms are often trivial.
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Weighted Simplicial Matrix-Tree Theorems

I Introduce an indeterminate xF for each face F ∈ ∆

I Weighted boundary ∂: multiply column F of (usual) ∂ by xF

I ∂Γ = restriction of ∂d to faces not in Γ

I Weighted reduced Laplacian LΓ = ∂Γ∂∗Γ

Theorem [DKM ’09]

hd :=
∑

Υ∈SST (Σ)

|H̃d−1(Υ)|2
∏
F∈Υ

x2
F =

sd

hd−1
|H̃d−2(Σ)|2

hd =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.
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A Very fine weighting

Example F = 235, xF = x12x23x35

To count spanning trees of shifted complexes with this weighting,
we need a new interpretation of degree sequence, in terms of
critical pairs:

F ∈ ∆,F − i ∪ (i + 1) 6∈ ∆

contributes an eigenvalue whose coarse weighting is i .
(Fun exercise is to convince yourself this does match transpose of
degree sequence in coarse weighting.)
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Critical pairs

124

125 134

126 135 234

145 235136

123

245236146
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What about matroids?

Weighted spanning tree enumerators for independence complexes
of matroids seem to factor nicely, but not even a conjectured
formula yet.

Examples:

I {124, 134, 234, 125, 135, 235}:

(x1x2x3x4x5)2(x1x2x3)(x1 + x2 + x3)(x4 + x5)

I {124, 125, 134, 135, 145, 234, 235, 245}:

(x1x2x3x4x5)3(x1 + x2 + x3 + x4 + x5)(x1 + x2)(x4 + x5)
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Cubical Complexes

Faces of Qn, n-dimensional cube: (0, 1, ∗)-strings of length
n. Dimension is number of *’s.

Vertices: (0, 1)-strings of length n

Edge in direction i : single * in position i .

Boundary: faces with one * converted to 0 or 1.

*0

0* ** 1*

*1

Cubical Complex: Subset of faces of Qn such that if a face is
included, then so is its boundary.
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Spanning Trees

Let Q be a d-dimensional cubical complex.
Υ ⊆ Q is a cubical spanning tree of Q when:

0. Υ(d−1) = Q(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(Q)− β̃d(Q) + β̃d−1(Q) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.

I Works more generally for cellular complexes.
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Example

The cubical biprism with equator, the boundary of 〈 ***0, **0* 〉

This is the part where you look at
the pretty ZomeTool model

I Let’s count the spanning trees.

I 5 + 5 spanning trees not containing face **00

I 5× 5 spanning trees containing face **00

I 35 spanning trees total

Art Duval Combinatorial Laplacians



Graphs
Eigenvalues of shifted complexes and matroids

Spanning Trees
Cubical Complexes

Definitions
Spanning Trees
Shifted cubical complexes

Example

The cubical biprism with equator, the boundary of 〈 ***0, **0* 〉

This is the part where you look at
the pretty ZomeTool model

I Let’s count the spanning trees.

I 5 + 5 spanning trees not containing face **00

I 5× 5 spanning trees containing face **00

I 35 spanning trees total

Art Duval Combinatorial Laplacians



Graphs
Eigenvalues of shifted complexes and matroids

Spanning Trees
Cubical Complexes

Definitions
Spanning Trees
Shifted cubical complexes

Example

The cubical biprism with equator, the boundary of 〈 ***0, **0* 〉

This is the part where you look at
the pretty ZomeTool model

I Let’s count the spanning trees.

I 5 + 5 spanning trees not containing face **00

I 5× 5 spanning trees containing face **00

I 35 spanning trees total

Art Duval Combinatorial Laplacians



Graphs
Eigenvalues of shifted complexes and matroids

Spanning Trees
Cubical Complexes

Definitions
Spanning Trees
Shifted cubical complexes

Example

The cubical biprism with equator, the boundary of 〈 ***0, **0* 〉

This is the part where you look at
the pretty ZomeTool model

I Let’s count the spanning trees.

I 5 + 5 spanning trees not containing face **00

I 5× 5 spanning trees containing face **00

I 35 spanning trees total

Art Duval Combinatorial Laplacians



Graphs
Eigenvalues of shifted complexes and matroids

Spanning Trees
Cubical Complexes

Definitions
Spanning Trees
Shifted cubical complexes

Laplacians
Definition The

reduced

Laplacian matrix of d-dimensional cubical
complex Q, denoted by L

r

(Q).

L(Q) = ∂(Q)∂(Q)T

∂(Q) = signed boundary matrix

“Reduced”: remove rows/columns corresponding to spanning tree
of (d − 1)-dimensional faces
Example biprism

00*0 01*0 0*00 0*10 10*0 00*0 11*0 . . .

0**0
1**0
*0*0
*1*0
**00
**10
. . .
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Cubical Matrix-Tree Theorem — Version I

Theorem [DKM] If Q a d-dimensional “metaconnected”
cubical complex;
(d − 1)-dimensional Laplacian Ld−1 = ∂d−1∂d−1

T ;
sd = product of nonzero eigenvalues of Ld−1, then

hd :=
∑

Υ∈CST (Q)

|H̃d−1(Υ)|2 =
sd

hd−1
|H̃d−2(Q)|2

Corollary When all H̃i = 0, then hd =
∏d

i=0 s
(−1)d−i

i

Example Biprism: hd = (72·54·4·32)(12)
(7·53·4·33·22·1)

= 35
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Cubical Matrix-Tree Theorem — Version II

I Γ ∈ CST (Q(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂Γ
T

Theorem [DKM]

hd =
∑

Υ∈CST (Q)

|H̃d−1(Υ)|2 =
|H̃d−2(Q; Z)|2

|H̃d−2(Γ; Z)|2
| det LΓ|.

Note: The |H̃d−2| terms are often trivial.
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Skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Qn are
2i with multiplicity

(n
i

)
×
( i−1
k−1

)
for i = k , . . . , n

In particular, they are integers.

Corollary The number of cubical spanning trees of the
k-skeleton of Qn is∏

(2j)(n
j)( j−2

k−1).

Example 4-cube
k eigenvalues

4 81

3 8364

2 836846

1 81644624

(0 24)
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Weighted tree enumeration on skeleta of cubes

Conjecture

This weighted enumeration has a nice formula.

Example Spanning trees of 2-skeleton of 4-cube, with appropriate
weighting:

p(123)p(124)p(134)p(234)p(1234)2

where, for instance,

p(123) = x1x2x3y1y2y3(
1

x1
+

1

x2
+

1

x3
+

1

y1
+

1

y2
+

1

y3
)
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Shifted cubical complexes
Motivated by shifted simplicial complexes.
Given σ ∈ Qn = {0, 1, ∗}n, let dir(σ) = {i : σi = ∗}
A cubical complex Q ⊆ {0, 1, ∗}n on n directions is shifted if:

1. If τ ∈ Q and dir(σ) < dir(τ) (componentwise partial order),
then σ ∈ Q.

2. If σ ∈ Q, and dir(σ) = dir(τ), then τ ∈ Q.
3. If |dir(σ)| = 1, then σ ∈ Q.

Example
***00 ***01 ***10 ***11
**0*0 **0*1 **1*0 **1*1
**00* **01* **10* **11*
*0**0 *0**1 *1**0 *1**1
*0*0* *0*1* *1*0* *1*1*
0***0 0***1 1***0 1***1
0**0* 0**1* 1**0* 1**1*
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Laplacians

I Shifted cubical complexes have integral Laplacian spectrum.

I But the only formula we have is recursive (in terms of deletion
and link).

Open Question

Is there a nice closed formula, perhaps involving some new
interpretation of degree sequence?

I Eran Nevo recently found a nice closed formula for homotopy
type, which gives the 0 eigenvalues.

I One possible strategy, then: Use the 0’s and recursion to
concoct a formula.
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Extremality of shifted cubical complexes

Open Question

Shifted simplicial complexes are extremal in several ways (including
f -vectors, algebraic shifting). Are shifted cubical complexes
extremal in any way?
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