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Counting weighted spanning trees of Kn

Theorem [Cayley]: Kn has nn−2 spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. |T | = n − 1

Note: Any two conditions imply the third.

Weighting

vertices? Silly (nn−2(x1 · · · xn))

edges? No nice structure (can’t see nn−2)

both! wt T =
∏

e∈T wt e =
∏

e∈T (
∏

v∈e xv ) Prüfer coding∑
T∈ST (Kn)

wt T = (x1 · · · xn)(x1 + · · ·+ xn)n−2
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Example: K4

I 4 trees like: T =

r r
rr���
� 1

2

3

4 wt T = (x1x2x3x4)x2
2

I 12 trees like: T =

r r
rr
1

2

3

4 wt T = (x1x2x3x4)x1x3

Total is (x1x2x3x4)(x1 + x2 + x3 + x4)2.
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Laplacian

Definition The

reduced

Laplacian matrix of graph G , denoted by
L

r

(G ).

Defn 1: L(G ) = D(G )− A(G )

D(G ) = diag(deg v1, . . . , deg vn)

A(G ) = adjacency matrix

Defn 2: L(G ) = ∂(G )∂(G )T

∂(G ) = incidence matrix (boundary matrix)

“Reduced”: remove rows/columns corresponding to any one vertex
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Example

r r
rr���

� 1

2

3

4 ∂ =

12 13 14 23 24

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2


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Matrix-Tree Theorems

Version I Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then G
has

λ1λ2 · · ·λn−1

n

spanning trees.
Version II G has | det Lr (G )| spanning trees
Proof [Version II]

det Lr (G ) = det ∂r (G )∂r (G )T =
∑
T

(det ∂r (T ))2

=
∑
T

(±1)2

by Binet-Cauchy
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Weighted Matrix-Tree Theorem∑
T∈ST (G)

wt T = | det L̂r (G )|,

where L̂ is weighted Laplacian.
Defn 1: L̂(G ) = D̂(G )− Â(G )

D̂(G ) = diag( ˆdegv1, . . . , ˆdegvn)
ˆdegvi =

∑
vivj∈E xixj

Â(G ) = adjacency matrix
(entry xixj for edge vivj)

Defn 2: L̂(G ) = ∂(G )B(G )∂(G )T

∂(G ) = incidence matrix
B(G ) diagonal, indexed by edges,
entry ±xixj for edge vivj

Art Duval Combinatorial Laplacians



Graphs
Eigenvalues of shifted complexes and matroids

Spanning Trees
Cubical Complexes

Complete graph
Arbitrary graphs
Threshold graphs

Example

r r
rr���

� 1

2

3

4

L̂ =


1(2 + 3 + 4) −12 −13 −14
−12 2(1 + 3 + 4) −23 −24
−13 −23 3(1 + 2) 0
−14 −24 0 4(1 + 2)


det L̂r = (1234)(1 + 2)(1 + 2 + 3 + 4)
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Threshold graphs

I Vertices 1, . . . , n

I E ∈ E , i 6∈ E , j ∈ E , i < j ⇒ E − j ∪ i ∈ E .

I Equivalently, the edges form an initial ideal in the
componentwise partial order.

Example

r r
rr���

� 1

2

3

4

12

��

HH��

23 14

13

24

34

HH
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Eigenvalues of threshold graphs

Theorem [Merris ’94] Eigenvalues are given by the transpose of
the Ferrers diagram of the degree sequence d .

r r
rr���

� 1

2

3

4

1

2

3

4

Corollary
∏

r 6=1(dT )r spanning trees
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Grone-Merris Conjecture

Conjecture (Grone-Merris ’94)

s E dT

λ1 ≤ (dT )1 = n

λ1 + λ2 ≤ (dT )1 + (dT )2

...

Progress:

I 1st and last inequalities are easy and trivial, respectively
I 2nd inequality

DR ’02 and tedious Mathematica
Katz ’05 using analysis

I whole conjecture holds for trees [Stephen ’07]
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Weighted spanning trees of threshold graphs
Theorem [Martin-Reiner ‘03; implied by Remmel-Williamson ‘02]:
If G is threshold, then

∑
T∈ST (G)

wt T = (x1 · · · xn)
∏
r 6=1

(

(dT )r∑
i=1

xi ).

Example

r r
rr���

� 1

2

3

4

1

2

3

4

(1234)(1 + 2)(1 + 2 + 3 + 4)
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Laplacians of simplicial complexes
Shifted complexes
Matroids
Spectral recursion

Laplacian

Simplicial complex Σ ⊆ 2V ; F ⊆ G ∈ Σ⇒ F ∈ Σ.

(simplicial) Laplacian ((k − 1)-dimensional, up-down)
Lk(Σ) = ∂k(Σ)∂k(Σ)T

boundary matrix ∂k : Σk → Σk−1

coboundary matrix ∂k
T : Σk−1 → Σk
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Example: Boundary of tetrahedron

∂T =

12 13 14 23 24 34

123 -1 1 0 -1 0 0
124 -1 0 1 0 -1 0
134 0 -1 1 0 0 -1
234 0 0 0 -1 1 -1

L =


2 −1 −1 1 1 0
−1 2 −1 −1 0 1
−1 −1 2 0 −1 −1
1 −1 0 2 −1 1
1 0 −1 −1 2 −1
0 1 −1 1 −1 2


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Shifted complexes

I Vertices 1, . . . , n

I F ∈ Σ, i 6∈ F , j ∈ F , i < j ⇒ F − j ∪ i ∈ Σ

I Equivalently, the k-faces form an initial ideal in the
componentwise partial order.

I Example (bipyramid with equator)
〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3
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Hasse diagram

124

125 134

126 135 234

145 235136

123

245236146
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Eigenvalues

Definition di is the i-dimensional degree sequence
(di )j = # i-faces containing vertex j .
Example
123 134 234
124 135 235
125 136 236
126 145

8
7
7
4
4
3

6 6 6 5 3 3 3 1 0 0 0

Theorem (DR ’02): If a simplicial complex is shifted, then
Laplacian eigenvalues given by (di )

T in every dimension i .

Open Question

Grone-Merris for simplicial complexes??
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Matroids

I ground set E = {1, . . . , n}
I Bases B: collection of k-subsets of E satisfying:
∀B ∈ B, ∀b ∈ B, ∀B ′ ∈ B, ∃b′ ∈ B ′ such that

(B − b) ∪ b′ ∈ B.

Example (graphical matroid: bases are spanning trees)

A
A
A
A
u

u uu
u
�
�
�
�

A
A
A
A

�
�
�
�

1 7

4

2 6

5
3 B =

1346 2346 1246 1456 1467
1347 2347 1247 1457 2467
1356 2356 1256 2456
1357 2357 1257 2457
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The simplicial complex formed by taking all subsets of every base
B ∈ B is the set of independent sets IN(M) of matroid M.
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Eigenvalues of Matroids

For matroids, eigenvalues are more easily described in terms of
natural generating function:

SM(t, q) :=
∑

i

t i
∑

λ∈s(Li−1(IN(M)))

qλ

Theorem [Kook-Reiner-Stanton ’00]: For a matroid M with
ground set E ,

SM(t, q) = q|E |
∑

I∈IN(M)

trank(Ī )(q−1)|π̄(I )|,

where π̄(I ) is a function of I involving internal/external activity.
In particular, the eigenvalues of M are integers.
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Spectral recursion for matroids. . .
Tutte polynomial deletion-contraction recursion:

TM = TM−e + TM/e

B(M − e) = {B ∈ B : e 6∈ B} (r = r(M))

B(M/e) = {B − e : B ∈ B, e ∈ B} (r = r(M)− 1)

Theorem [Kook ’04]:
SM = qSM−e + qtSM/e + (1− q)(error term).
Conjecture [Kook-Reiner]: error term = S(M−e,M/e), where
(M − e,M/e) = (IN(M − e), IN(M/e)).
Theorem [D ’05]: This is true, i.e.,

SM = qSM−e + qtSM/e + (1− q)S(M−e,M/e).
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. . . and for shifted complexes

Generalize deletion and contraction to arbitrary simplicial complex
∆.

∆− e = {F ∈ ∆: e 6∈ F}
∆/e = {F − e : F ∈ ∆, e ∈ F} = lk∆ e

S∆(t, q) :=
∑

i

t i
∑

λ∈s(Li−1(∆))

qλ

Theorem [D ’05]: Spectral recursion holds for shifted complexes
∆:

S∆ = qS∆−e + qtS∆/e + (1− q)S(∆−e,∆/e).
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A common generalization of shifted complexes and
matroids?

Open Question

What is the common generalization of shifted complexes and
matroid independence complexes:

I integral Laplacian eigenvalues

I satisfying “spectral recursion”

Note that proofs of spectral recursion are completely different for
matroids and shifted complexes.
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Eigenvalues of shifted pairs
Definition Fix k. Let ∆′ ⊆ ∆ be simplicial complexes. Then

dj(∆k ,∆
′
k−1) = {F ∈ ∆k : F − j 6∈ ∆′k−1},

and d(∆k ,∆
′
k−1) = (d1, . . . , dn).

�
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�
��

�
��

�
��

Q
QQ

Q
QQ

Q
QQ

Q
QQ

123 124 234 134 145 125 235 135 126 236 136

24 34 45 35 26 16 3625

7
4
4

3 3 3 3 1 1 1

Theorem [D ’05]: Eigenvalues of (∆k ,∆
′
k−1) equal

d(∆k ,∆
′
k−1)T .
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Complete skeleta of simplicial complexes

Simplicial complex Σ ⊆ 2V ;
F ⊆ G ∈ Σ⇒ F ∈ Σ.

Complete skeleton The k-dimensional complete complex on n
vertices, i.e.,

K k
n = {F ⊆ V : |F | ≤ k + 1}

(so Kn = K 1
n ).
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Simplicial spanning trees of K k
n [Kalai, ’83]

Υ ⊆ K k
n is a simplicial spanning tree of K k

n when:

0. Υ(k−1) = K k−1
n (“spanning”);

1. H̃k−1(Υ; Z) is a finite group (“connected”);

2. H̃k(Υ; Z) = 0 (“acyclic”);

3. |Υ| =
(n−1

k

)
(“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When k = 1, coincides with usual definition.
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Counting simplicial spanning trees of K k
n

Conjecture [Bolker ’76]∑
Υ∈SST (K k

n )

|H̃k−1(Υ)|2

= n(n−2
k )
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Counting simplicial spanning trees of K k
n

Theorem [Kalai ’83]∑
Υ∈SST (K k

n )

|H̃k−1(Υ)|2 = n(n−2
k )
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Weighted simplicial spanning trees of K k
n

As before,
wt Υ =

∏
F∈Υ

wt F =
∏
F∈Υ

(
∏
v∈F

xv )

Example:
Υ = {123, 124, 125, 134, 135, 245}

wt Υ = x5
1 x4

2 x3
3 x3

4 x3
5

Theorem [Kalai, ’83]∑
Υ∈SST (Kn)

|H̃k−1(Υ)|2(wt Υ) = (x1 · · · xn)(n−2
k−1)(x1 + · · ·+ xn)(n−2

k )

(Adin (’92) did something similar for complete r -partite
complexes.)
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Proof

Proof uses determinant of reduced Laplacian of K k
n . “Reduced”

now means pick one vertex, and then remove rows/columns
corresponding to all (k − 1)-dimensional faces containing that
vertex.
L = ∂∂T

∂ : ∆k → ∆k−1 boundary
∂T : ∆k−1 → ∆k coboundary
Weighted version: Multiply column F of ∂ by xF
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Simplicial spanning trees of arbitrary simplicial complexes

Let Σ be a d-dimensional simplicial complex.
Υ ⊆ Σ is a simplicial spanning tree of Σ when:

0. Υ(d−1) = Σ(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(Σ)− β̃d(Σ) + β̃d−1(Σ) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Example

Bipyramid with equator, 〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3

I 3 + 3 SST’s not containing face 123

I 3× 3 SST’s containing face 123

Total is (x1x2x3)3(x4x5)2(x1 + x2 + x3)(x1 + x2 + x3 + x4 + x5).
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Simplicial Matrix-Tree Theorem — Version I

I Σ a d-dimensional “metaconnected” simplicial complex

I (d − 1)-dimensional (up-down) Laplacian Ld−1 = ∂d−1∂
T
d−1

I sd = product of nonzero eigenvalues of Ld−1.

Theorem [DKM ’09]

hd :=
∑

Υ∈SST (Σ)

|H̃d−1(Υ)|2 =
sd

hd−1
|H̃d−2(Σ)|2
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Simplicial Matrix-Tree Theorem — Version II

I Γ ∈ SST (Σ(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂
∗
Γ

Theorem [DKM ’09]

hd =
∑

Υ∈SST (Σ)

|H̃d−1(Υ)|2 =
|H̃d−2(Σ; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.

Note: The |H̃d−2| terms are often trivial.
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Weighted Simplicial Matrix-Tree Theorems

I Introduce an indeterminate xF for each face F ∈ ∆

I Weighted boundary ∂: multiply column F of (usual) ∂ by xF

I ∂Γ = restriction of ∂d to faces not in Γ

I Weighted reduced Laplacian LΓ = ∂Γ∂∗Γ

Theorem [DKM ’09]

hd :=
∑

Υ∈SST (Σ)

|H̃d−1(Υ)|2
∏
F∈Υ

x2
F =

sd

hd−1
|H̃d−2(Σ)|2

hd =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.
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A Very fine weighting

Example F = 235, xF = x12x23x35

To count spanning trees of shifted complexes with this weighting,
we need a new interpretation of degree sequence, in terms of
critical pairs:

F ∈ ∆,F − i ∪ (i + 1) 6∈ ∆

contributes an eigenvalue whose coarse weighting is i .
(Fun exercise is to convince yourself this does match transpose of
degree sequence in coarse weighting.)
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Critical pairs

124

125 134

126 135 234

145 235136

123

245236146
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What about matroids?

Weighted spanning tree enumerators for independence complexes
of matroids seem to factor nicely, but not even a conjectured
formula yet.

Examples:

I {124, 134, 234, 125, 135, 235}:

(x1x2x3x4x5)2(x1x2x3)(x1 + x2 + x3)(x4 + x5)

I {124, 125, 134, 135, 145, 234, 235, 245}:

(x1x2x3x4x5)3(x1 + x2 + x3 + x4 + x5)(x1 + x2)(x4 + x5)
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Cubical Complexes

Faces of Qn, n-dimensional cube: (0, 1, ∗)-strings of length
n. Dimension is number of *’s.

Vertices: (0, 1)-strings of length n

Edge in direction i : single * in position i .

Boundary: faces with one * converted to 0 or 1.

*0

0* ** 1*

*1

Cubical Complex: Subset of faces of Qn such that if a face is
included, then so is its boundary.
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Spanning Trees

Let Q be a d-dimensional cubical complex.
Υ ⊆ Q is a cubical spanning tree of Q when:

0. Υ(d−1) = Q(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(Q)− β̃d(Q) + β̃d−1(Q) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.

I Works more generally for cellular complexes.
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Example

The cubical biprism with equator, the boundary of 〈 ***0, **0* 〉

This is the part where you look at
the pretty ZomeTool model

I Let’s count the spanning trees.

I 5 + 5 spanning trees not containing face **00

I 5× 5 spanning trees containing face **00

I 35 spanning trees total
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Laplacians
Definition The

reduced

Laplacian matrix of d-dimensional cubical
complex Q, denoted by L

r

(Q).

L(Q) = ∂(Q)∂(Q)T

∂(Q) = signed boundary matrix

“Reduced”: remove rows/columns corresponding to spanning tree
of (d − 1)-dimensional faces
Example biprism

00*0 01*0 0*00 0*10 10*0 00*0 11*0 . . .

0**0
1**0
*0*0
*1*0
**00
**10
. . .
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Cubical Matrix-Tree Theorem — Version I

Theorem [DKM] If Q a d-dimensional “metaconnected”
cubical complex;
(d − 1)-dimensional Laplacian Ld−1 = ∂d−1∂d−1

T ;
sd = product of nonzero eigenvalues of Ld−1, then

hd :=
∑

Υ∈CST (Q)

|H̃d−1(Υ)|2 =
sd

hd−1
|H̃d−2(Q)|2

Corollary When all H̃i = 0, then hd =
∏d

i=0 s
(−1)d−i

i

Example Biprism: hd = (72·54·4·32)(12)
(7·53·4·33·22·1)

= 35
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Cubical Matrix-Tree Theorem — Version II

I Γ ∈ CST (Q(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂Γ
T

Theorem [DKM]

hd =
∑

Υ∈CST (Q)

|H̃d−1(Υ)|2 =
|H̃d−2(Q; Z)|2

|H̃d−2(Γ; Z)|2
| det LΓ|.

Note: The |H̃d−2| terms are often trivial.
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Skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Qn are
2i with multiplicity

(n
i

)
×
( i−1
k−1

)
for i = k , . . . , n

In particular, they are integers.

Corollary The number of cubical spanning trees of the
k-skeleton of Qn is∏

(2j)(n
j)( j−2

k−1).

Example 4-cube
k eigenvalues

4 81

3 8364

2 836846

1 81644624

(0 24)
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Weighted tree enumeration on skeleta of cubes

Conjecture

This weighted enumeration has a nice formula.

Example Spanning trees of 2-skeleton of 4-cube, with appropriate
weighting:

p(123)p(124)p(134)p(234)p(1234)2

where, for instance,

p(123) = x1x2x3y1y2y3(
1

x1
+

1

x2
+

1

x3
+

1

y1
+

1

y2
+

1

y3
)
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Shifted cubical complexes
Motivated by shifted simplicial complexes.
Given σ ∈ Qn = {0, 1, ∗}n, let dir(σ) = {i : σi = ∗}
A cubical complex Q ⊆ {0, 1, ∗}n on n directions is shifted if:

1. If τ ∈ Q and dir(σ) < dir(τ) (componentwise partial order),
then σ ∈ Q.

2. If σ ∈ Q, and dir(σ) = dir(τ), then τ ∈ Q.
3. If |dir(σ)| = 1, then σ ∈ Q.

Example
***00 ***01 ***10 ***11
**0*0 **0*1 **1*0 **1*1
**00* **01* **10* **11*
*0**0 *0**1 *1**0 *1**1
*0*0* *0*1* *1*0* *1*1*
0***0 0***1 1***0 1***1
0**0* 0**1* 1**0* 1**1*
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Laplacians

I Shifted cubical complexes have integral Laplacian spectrum.

I But the only formula we have is recursive (in terms of deletion
and link).

Open Question

Is there a nice closed formula, perhaps involving some new
interpretation of degree sequence?

I Eran Nevo recently found a nice closed formula for homotopy
type, which gives the 0 eigenvalues.

I One possible strategy, then: Use the 0’s and recursion to
concoct a formula.
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Extremality of shifted cubical complexes

Open Question

Shifted simplicial complexes are extremal in several ways (including
f -vectors, algebraic shifting). Are shifted cubical complexes
extremal in any way?
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