Combinatorial Laplacians

Art Duval
Department of Mathematical Sciences
University of Texas at El Paso
Southeast Texas Discrete Math \& Applications Workshop Texas A\&M University at Galveston
October 10, 2009

Acknowledgments

Some results part of collaboration with Vic Reiner, and with Carly Klivans and Jeremy Martin

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly $\left(n^{n-2}\left(x_{1} \cdots x_{n}\right)\right)$

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly $\left(n^{n-2}\left(x_{1} \cdots x_{n}\right)\right)$
edges? No nice structure (can't see n^{n-2})

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly $\left(n^{n-2}\left(x_{1} \cdots x_{n}\right)\right)$
edges? No nice structure (can't see n^{n-2}) both! wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$ Prüfer coding

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly $\left(n^{n-2}\left(x_{1} \cdots x_{n}\right)\right)$
edges? No nice structure (can't see n^{n-2}) both! wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$ Prüfer coding

$$
\sum_{T \in S T\left(K_{n}\right)} \mathrm{wt} T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

Example: K_{4}

- 4 trees like: $T=3 \longleftrightarrow^{1}{ }^{4} \quad$ wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}$

Example: K_{4}

- 4 trees like: $T=2 \square 4$

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2$. 4 wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}$

Example: K_{4}

- 4 trees like: $T=2 \square .4$

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2$. 4 wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}$

Total is $\left(x_{1} x_{2} x_{3} x_{4}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}$.

Laplacian

Definition The $L(G)$.

Laplacian

Definition The Laplacian matrix of graph G, denoted by $L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Laplacian

Definition The
Laplacian matrix of graph G, denoted by $L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

Laplacian

Definition The reduced Laplacian matrix of graph G, denoted by $L_{r}(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

"Reduced": remove rows/columns corresponding to any one vertex

Example

$$
\begin{aligned}
& \partial=\begin{array}{c|ccccc}
& 12 & 13 & 14 & 23 & 24 \\
\hline 1 & -1 & -1 & -1 & 0 & 0 \\
2 & 1 & 0 & 0 & -1 & -1 \\
3 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 0 & 1 & 0 & 1
\end{array} \\
& L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Matrix-Tree Theorems

Version I Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then G has

$$
\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

spanning trees.
Version II G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees Proof [Version II]

$$
\begin{aligned}
\operatorname{det} L_{r}(G) & =\operatorname{det} \partial_{r}(G) \partial_{r}(G)^{T}=\sum_{T}\left(\operatorname{det} \partial_{r}(T)\right)^{2} \\
& =\sum_{T}(\pm 1)^{2}
\end{aligned}
$$

by Binet-Cauchy

Weighted Matrix-Tree Theorem

$$
\sum_{T \in S T(G)} w t T=\left|\operatorname{det} \hat{L}_{r}(G)\right|
$$

where \hat{L} is weighted Laplacian.
Defn 1: $\hat{L}(G)=\hat{D}(G)-\hat{A}(G)$
$\hat{D}(G)=\operatorname{diag}\left(\hat{\operatorname{eg}} v_{1}, \ldots, \operatorname{deg} v_{n}\right)$
$\operatorname{deg} v_{i}=\sum_{v_{i} v_{j} \in E} x_{i} x_{j}$
$\hat{A}(G)=$ adjacency matrix
(entry $x_{i} x_{j}$ for edge $v_{i} v_{j}$)
Defn 2: $\hat{L}(G)=\partial(G) B(G) \partial(G)^{T}$
$\partial(G)=$ incidence matrix
$B(G)$ diagonal, indexed by edges,
entry $\pm x_{i} x_{j}$ for edge $v_{i} v_{j}$

Example

$$
\begin{gathered}
\hat{L}=\left(\begin{array}{cccc}
1(2+3+4) & -12 & -13 & -14 \\
-12 & 2(1+3+4) & -23 & -24 \\
-13 & -23 & 3(1+2) & 0 \\
-14 & -24 & 0 & 4(1+2)
\end{array}\right) \\
\operatorname{det} \hat{L}_{r}=(1234)(1+2)(1+2+3+4)
\end{gathered}
$$

Threshold graphs

- Vertices $1, \ldots, n$

Example

Threshold graphs

- Vertices $1, \ldots, n$
- $E \in \mathcal{E}, i \notin E, j \in E, i<j \Rightarrow E-j \cup i \in \mathcal{E}$.

Example

Threshold graphs

- Vertices $1, \ldots, n$
- $E \in \mathcal{E}, i \notin E, j \in E, i<j \Rightarrow E-j \cup i \in \mathcal{E}$.
- Equivalently, the edges form an initial ideal in the componentwise partial order.

Example

Eigenvalues of threshold graphs

Theorem [Merris '94] Eigenvalues are given by the transpose of the Ferrers diagram of the degree sequence d.

Eigenvalues of threshold graphs

Theorem [Merris '94] Eigenvalues are given by the transpose of the Ferrers diagram of the degree sequence d.

Corollary $\prod_{r \neq 1}\left(d^{T}\right)_{r}$ spanning trees

Grone-Merris Conjecture

Conjecture (Grone-Merris '94)

$$
\begin{aligned}
s & \unlhd d^{T} \\
\lambda_{1} & \leq\left(d^{T}\right)_{1}=n \\
\lambda_{1}+\lambda_{2} & \leq\left(d^{T}\right)_{1}+\left(d^{T}\right)_{2}
\end{aligned}
$$

Grone-Merris Conjecture

Conjecture (Grone-Merris '94)

$$
\begin{aligned}
s & \unlhd d^{T} \\
\lambda_{1} & \leq\left(d^{T}\right)_{1}=n \\
\lambda_{1}+\lambda_{2} & \leq\left(d^{T}\right)_{1}+\left(d^{T}\right)_{2}
\end{aligned}
$$

Progress:

- 1st and last inequalities are easy and trivial, respectively

Grone-Merris Conjecture

Conjecture (Grone-Merris '94)

$$
\begin{aligned}
s & \unlhd d^{T} \\
\lambda_{1} & \leq\left(d^{T}\right)_{1}=n \\
\lambda_{1}+\lambda_{2} & \leq\left(d^{T}\right)_{1}+\left(d^{T}\right)_{2}
\end{aligned}
$$

Progress:

- 1st and last inequalities are easy and trivial, respectively
- 2nd inequality

Grone-Merris Conjecture

Conjecture (Grone-Merris '94)

$$
\begin{aligned}
s & \unlhd d^{T} \\
\lambda_{1} & \leq\left(d^{T}\right)_{1}=n \\
\lambda_{1}+\lambda_{2} & \leq\left(d^{T}\right)_{1}+\left(d^{T}\right)_{2}
\end{aligned}
$$

Progress:

- 1st and last inequalities are easy and trivial, respectively
- 2nd inequality

DR '02 and tedious Mathematica

Grone-Merris Conjecture

Conjecture (Grone-Merris '94)

$$
\begin{aligned}
s & \unlhd d^{T} \\
\lambda_{1} & \leq\left(d^{T}\right)_{1}=n \\
\lambda_{1}+\lambda_{2} & \leq\left(d^{T}\right)_{1}+\left(d^{T}\right)_{2}
\end{aligned}
$$

Progress:

- 1st and last inequalities are easy and trivial, respectively
- 2nd inequality

DR '02 and tedious Mathematica
Katz '05 using analysis

Grone-Merris Conjecture

Conjecture (Grone-Merris '94)

$$
\begin{aligned}
s & \unlhd d^{T} \\
\lambda_{1} & \leq\left(d^{T}\right)_{1}=n \\
\lambda_{1}+\lambda_{2} & \leq\left(d^{T}\right)_{1}+\left(d^{T}\right)_{2}
\end{aligned}
$$

Progress:

- 1st and last inequalities are easy and trivial, respectively
- 2nd inequality

DR '02 and tedious Mathematica
Katz '05 using analysis

- whole conjecture holds for trees [Stephen '07]

Weighted spanning trees of threshold graphs

Theorem [Martin-Reiner '03; implied by Remmel-Williamson '02]: If G is threshold, then

$$
\sum_{T \in S T(G)} \text { wt } T=\left(x_{1} \cdots x_{n}\right) \prod_{r \neq 1}\left(\sum_{i=1}^{\left(d^{T}\right)_{r}} x_{i}\right)
$$

Example

$$
(1234)(1+2)(1+2+3+4)
$$

Laplacian

Simplicial complex $\Sigma \subseteq 2^{V} ; F \subseteq G \in \Sigma \Rightarrow F \in \Sigma$.

Laplacian

Simplicial complex $\Sigma \subseteq 2^{V} ; F \subseteq G \in \Sigma \Rightarrow F \in \Sigma$.
(simplicial) Laplacian (($k-1$)-dimensional, up-down)

$$
L_{k}(\Sigma)=\partial_{k}(\Sigma) \partial_{k}(\Sigma)^{T}
$$

Laplacian

Simplicial complex $\Sigma \subseteq 2^{V} ; F \subseteq G \in \Sigma \Rightarrow F \in \Sigma$.
(simplicial) Laplacian (($k-1$)-dimensional, up-down)

$$
L_{k}(\Sigma)=\partial_{k}(\Sigma) \partial_{k}(\Sigma)^{T}
$$

boundary matrix $\partial_{k}: \Sigma_{k} \rightarrow \Sigma_{k-1}$

Laplacian

Simplicial complex $\Sigma \subseteq 2^{V} ; F \subseteq G \in \Sigma \Rightarrow F \in \Sigma$.
(simplicial) Laplacian (($k-1$)-dimensional, up-down)

$$
L_{k}(\Sigma)=\partial_{k}(\Sigma) \partial_{k}(\Sigma)^{T}
$$

boundary matrix $\partial_{k}: \Sigma_{k} \rightarrow \Sigma_{k-1}$
coboundary matrix $\partial_{k}{ }^{\top}: \Sigma_{k-1} \rightarrow \Sigma_{k}$

Example: Boundary of tetrahedron

$$
\begin{aligned}
& \partial^{T}=\begin{array}{c|cccccc}
& 12 & 13 & 14 & 23 & 24 & 34 \\
\hline 123 & -1 & 1 & 0 & -1 & 0 & 0 \\
124 & -1 & 0 & 1 & 0 & -1 & 0 \\
134 & 0 & -1 & 1 & 0 & 0 & -1 \\
234 & 0 & 0 & 0 & -1 & 1 & -1
\end{array} \\
& L=\left(\begin{array}{cccccc}
2 & -1 & -1 & 1 & 1 & 0 \\
-1 & 2 & -1 & -1 & 0 & 1 \\
-1 & -1 & 2 & 0 & -1 & -1 \\
1 & -1 & 0 & 2 & -1 & 1 \\
1 & 0 & -1 & -1 & 2 & -1 \\
0 & 1 & -1 & 1 & -1 & 2
\end{array}\right)
\end{aligned}
$$

Shifted complexes

- Vertices $1, \ldots, n$

Shifted complexes

- Vertices $1, \ldots, n$
- $F \in \Sigma, i \notin F, j \in F, i<j \Rightarrow F-j \cup i \in \Sigma$

Shifted complexes

- Vertices $1, \ldots, n$
- $F \in \Sigma, i \notin F, j \in F, i<j \Rightarrow F-j \cup i \in \Sigma$
- Equivalently, the k-faces form an initial ideal in the componentwise partial order.

Shifted complexes

- Vertices $1, \ldots, n$
- $F \in \Sigma, i \notin F, j \in F, i<j \Rightarrow F-j \cup i \in \Sigma$
- Equivalently, the k-faces form an initial ideal in the componentwise partial order.
- Example (bipyramid with equator) $\langle 123,124,125,134,135,234,235\rangle$

Hasse diagram

Hasse diagram

Eigenvalues

Definition d_{i} is the i-dimensional degree sequence $\left(d_{i}\right)_{j}=\# i$-faces containing vertex j.

Example

123	134	234
124	135	235
125	136	236
126	145	

Eigenvalues

Definition d_{i} is the i-dimensional degree sequence
$\left(d_{i}\right)_{j}=\# i$-faces containing vertex j.

Example

123	134	234
124	135	235
125	136	236
126	145	

Theorem (DR '02): If a simplicial complex is shifted, then Laplacian eigenvalues given by $\left(d_{i}\right)^{T}$ in every dimension i.

Eigenvalues

Definition d_{i} is the i-dimensional degree sequence $\left(d_{i}\right)_{j}=\# i$-faces containing vertex j.

Example

123	134	234
124	135	235
125	136	236
126	145	

Theorem (DR '02): If a simplicial complex is shifted, then Laplacian eigenvalues given by $\left(d_{i}\right)^{T}$ in every dimension i.

Open Question
Grone-Merris for simplicial complexes??

Matroids

- ground set $E=\{1, \ldots, n\}$
- Bases \mathcal{B} : collection of k-subsets of E satisfying: $\forall B \in \mathcal{B}, \forall b \in B, \forall B^{\prime} \in \mathcal{B}, \exists b^{\prime} \in B^{\prime}$ such that

$$
(B-b) \cup b^{\prime} \in \mathcal{B} .
$$

Matroids

- ground set $E=\{1, \ldots, n\}$
- Bases \mathcal{B} : collection of k-subsets of E satisfying: $\forall B \in \mathcal{B}, \forall b \in B, \forall B^{\prime} \in \mathcal{B}, \exists b^{\prime} \in B^{\prime}$ such that

$$
(B-b) \cup b^{\prime} \in \mathcal{B} .
$$

Example (graphical matroid: bases are spanning trees)

$\mathcal{B}=$| 1346 | 2346 | 1246 | 1456 | 1467 |
| :--- | :--- | :--- | :--- | :--- |
| 1347 | 2347 | 1247 | 1457 | 2467 |
| 1356 | 2356 | 1256 | 2456 | |
| 1357 | 2357 | 1257 | 2457 | |
| 1367 | 2367 | 1267 | | |

Matroids

- ground set $E=\{1, \ldots, n\}$
- Bases \mathcal{B} : collection of k-subsets of E satisfying: $\forall B \in \mathcal{B}, \forall b \in B, \forall B^{\prime} \in \mathcal{B}, \exists b^{\prime} \in B^{\prime}$ such that

$$
(B-b) \cup b^{\prime} \in \mathcal{B} .
$$

Example (graphical matroid: bases are spanning trees)

$\mathcal{B}=$| 1346 | 2346 | 1246 | 1456 | 1467 |
| :--- | :--- | :--- | :--- | :--- |
| 1347 | 2347 | 1247 | 1457 | 2467 |
| 1356 | 2356 | 1256 | 2456 | |
| 1357 | 2357 | 1257 | 2457 | |
| 1367 | 2367 | 1267 | | |

The simplicial complex formed by taking all subsets of every base $B \in \mathcal{B}$ is the set of independent sets $\operatorname{IN}(M)$ of matroid M.

Eigenvalues of Matroids

For matroids, eigenvalues are more easily described in terms of natural generating function:

$$
S_{M}(t, q):=\sum_{i} t^{i} \sum_{\lambda \in \mathbf{s}\left(L_{i-1}(\operatorname{lN}(M))\right)} q^{\lambda}
$$

Eigenvalues of Matroids

For matroids, eigenvalues are more easily described in terms of natural generating function:

$$
S_{M}(t, q):=\sum_{i} t^{i} \sum_{\lambda \in \mathbf{s}\left(L_{i-1}(\operatorname{IN}(M))\right)} q^{\lambda}
$$

Theorem [Kook-Reiner-Stanton '00]: For a matroid M with ground set E,

$$
S_{M}(t, q)=q^{|E|} \sum_{I \in \operatorname{IN}(M)} t^{\operatorname{rank}(\bar{l})}\left(q^{-1}\right)^{|\bar{\pi}(I)|}
$$

where $\bar{\pi}(I)$ is a function of I involving internal/external activity. In particular, the eigenvalues of M are integers.

Spectral recursion for matroids. . .

Tutte polynomial deletion-contraction recursion:

$$
\begin{aligned}
T_{M}=T_{M-e}+T_{M / e} & \\
\mathcal{B}(M-e)=\{B \in \mathcal{B}: e \notin B\} & (r=r(M)) \\
\mathcal{B}(M / e)=\{B-e: B \in \mathcal{B}, e \in B\} & (r=r(M)-1)
\end{aligned}
$$

Spectral recursion for matroids. . .

Tutte polynomial deletion-contraction recursion:

$$
\begin{aligned}
T_{M}=T_{M-e}+T_{M / e} & \\
\mathcal{B}(M-e)=\{B \in \mathcal{B}: e \notin B\} & (r=r(M)) \\
\mathcal{B}(M / e)=\{B-e: B \in \mathcal{B}, e \in B\} & (r=r(M)-1)
\end{aligned}
$$

Theorem [Kook '04]:
$S_{M}=q S_{M-e}+q t S_{M / e}+(1-q)($ error term $)$.

Spectral recursion for matroids. . .

Tutte polynomial deletion-contraction recursion:

$$
\begin{aligned}
T_{M}=T_{M-e}+T_{M / e} & \\
\mathcal{B}(M-e)=\{B \in \mathcal{B}: e \notin B\} & (r=r(M)) \\
\mathcal{B}(M / e)=\{B-e: B \in \mathcal{B}, e \in B\} & (r=r(M)-1)
\end{aligned}
$$

Theorem [Kook '04]:
$S_{M}=q S_{M-e}+q t S_{M / e}+(1-q)($ error term $)$.
Conjecture [Kook-Reiner]: error term $=S_{(M-e, M / e)}$, where $(M-e, M / e)=(\operatorname{IN}(M-e), \operatorname{IN}(M / e))$.

Spectral recursion for matroids. . .

Tutte polynomial deletion-contraction recursion:

$$
\begin{aligned}
T_{M}=T_{M-e}+T_{M / e} & \\
\mathcal{B}(M-e)=\{B \in \mathcal{B}: e \notin B\} & (r=r(M)) \\
\mathcal{B}(M / e)=\{B-e: B \in \mathcal{B}, e \in B\} & (r=r(M)-1)
\end{aligned}
$$

Theorem [Kook '04]:
$S_{M}=q S_{M-e}+q t S_{M / e}+(1-q)$ (error term).
Conjecture [Kook-Reiner]: error term $=S_{(M-e, M / e)}$, where $(M-e, M / e)=(\operatorname{IN}(M-e), \operatorname{IN}(M / e))$.
Theorem [D '05]: This is true, i.e.,

$$
S_{M}=q S_{M-e}+q t S_{M / e}+(1-q) S_{(M-e, M / e)}
$$

... and for shifted complexes

Generalize deletion and contraction to arbitrary simplicial complex Δ.

$$
\begin{aligned}
\Delta-e= & \{F \in \Delta: e \notin F\} \\
\Delta / e= & \{F-e: F \in \Delta, e \in F\} \quad=\mathrm{Ik}_{\Delta} e \\
& S_{\Delta}(t, q):=\sum_{i} t^{i} \sum_{\lambda \in \mathrm{s}\left(L_{i-1}(\Delta)\right)} q^{\lambda}
\end{aligned}
$$

Theorem [D '05]: Spectral recursion holds for shifted complexes Δ :

$$
S_{\Delta}=q S_{\Delta-e}+q t S_{\Delta / e}+(1-q) S_{(\Delta-e, \Delta / e)} .
$$

A common generalization of shifted complexes and matroids?

Open Question

What is the common generalization of shifted complexes and matroid independence complexes:

- integral Laplacian eigenvalues
- satisfying "spectral recursion"

Note that proofs of spectral recursion are completely different for matroids and shifted complexes.

Eigenvalues of shifted pairs

Definition Fix k. Let $\Delta^{\prime} \subseteq \Delta$ be simplicial complexes. Then

$$
d_{j}\left(\Delta_{k}, \Delta_{k-1}^{\prime}\right)=\left\{F \in \Delta_{k}: F-j \notin \Delta_{k-1}^{\prime}\right\},
$$

and $d\left(\Delta_{k}, \Delta_{k-1}^{\prime}\right)=\left(d_{1}, \ldots, d_{n}\right)$.

Eigenvalues of shifted pairs

Definition Fix k. Let $\Delta^{\prime} \subseteq \Delta$ be simplicial complexes. Then

$$
d_{j}\left(\Delta_{k}, \Delta_{k-1}^{\prime}\right)=\left\{F \in \Delta_{k}: F-j \notin \Delta_{k-1}^{\prime}\right\},
$$

and $d\left(\Delta_{k}, \Delta_{k-1}^{\prime}\right)=\left(d_{1}, \ldots, d_{n}\right)$.

Theorem [D '05]: Eigenvalues of ($\Delta_{k}, \Delta_{k-1}^{\prime}$) equal $d\left(\Delta_{k}, \Delta_{k-1}^{\prime}\right)^{T}$.

Complete skeleta of simplicial complexes

Simplicial complex $\Sigma \subseteq 2^{V}$;

$$
F \subseteq G \in \Sigma \Rightarrow F \in \Sigma
$$

Complete skeleta of simplicial complexes

Simplicial complex $\Sigma \subseteq 2^{V}$;

$$
F \subseteq G \in \Sigma \Rightarrow F \in \Sigma
$$

Complete skeleton The k-dimensional complete complex on n vertices, i.e.,

$$
K_{n}^{k}=\{F \subseteq V:|F| \leq k+1\}
$$

$$
\left(\text { so } K_{n}=K_{n}^{1}\right) .
$$

Simplicial spanning trees of K_{n}^{k} [Kalai, '83]

$\Upsilon \subseteq K_{n}^{k}$ is a simplicial spanning tree of K_{n}^{k} when:
0. $\Upsilon_{(k-1)}=K_{n}^{k-1}$ ("spanning");

1. $\tilde{H}_{k-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{k}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $|\Upsilon|=\binom{n-1}{k}($ "count" $)$.

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $k=1$, coincides with usual definition.

Counting simplicial spanning trees of K_{n}^{k}

Conjecture [Bolker '76]

$$
\sum_{\Upsilon \in S S T\left(K_{n}^{k}\right)}=n^{\binom{n-2}{k}}
$$

Counting simplicial spanning trees of K_{n}^{k}

Theorem [Kalai '83]

$$
\sum_{\Upsilon \in S S T\left(K_{n}^{k}\right)}\left|\tilde{H}_{k-1}(\Upsilon)\right|^{2}=n^{\binom{n-2}{k}}
$$

Weighted simplicial spanning trees of K_{n}^{k}
As before,

$$
\text { wt } \Upsilon=\prod_{F \in \Upsilon} \mathrm{wt} F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example:

$$
\begin{gathered}
\Upsilon=\{123,124,125,134,135,245\} \\
w t \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{gathered}
$$

Weighted simplicial spanning trees of K_{n}^{k}

As before,

$$
\text { wt } \Upsilon=\prod_{F \in \Upsilon} \mathrm{wt} F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example:

$$
\begin{gathered}
\Upsilon=\{123,124,125,134,135,245\} \\
\text { wt } \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{gathered}
$$

Theorem [Kalai, '83]

$$
\sum_{\Upsilon \in S S T\left(K_{n}\right)}\left|\tilde{H}_{k-1}(\Upsilon)\right|^{2}(w t \Upsilon)=\left(x_{1} \cdots x_{n}\right)^{\binom{n-2}{k-1}}\left(x_{1}+\cdots+x_{n}\right)\binom{n-2}{k}
$$

Weighted simplicial spanning trees of K_{n}^{k}

As before,

$$
\mathrm{wt} \Upsilon=\prod_{F \in \Upsilon} \mathrm{wt} F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example:

$$
\begin{gathered}
\Upsilon=\{123,124,125,134,135,245\} \\
\text { wt } \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{gathered}
$$

Theorem [Kalai, '83]

$$
\sum_{\Upsilon \in S S T\left(K_{n}\right)}\left|\tilde{H}_{k-1}(\Upsilon)\right|^{2}(w t \Upsilon)=\left(x_{1} \cdots x_{n}\right)^{\binom{n-2}{k-1}}\left(x_{1}+\cdots+x_{n}\right)^{\binom{n-2}{k}}
$$

(Adin ('92) did something similar for complete r-partite complexes.)

Proof

Proof uses determinant of reduced Laplacian of K_{n}^{k}. "Reduced" now means pick one vertex, and then remove rows/columns corresponding to all ($k-1$)-dimensional faces containing that vertex.
$L=\partial \partial^{T}$
$\partial: \Delta_{k} \rightarrow \Delta_{k-1}$ boundary
$\partial^{T}: \Delta_{k-1} \rightarrow \Delta_{k}$ coboundary
Weighted version: Multiply column F of ∂ by x_{F}

Simplicial spanning trees of arbitrary simplicial complexes

Let Σ be a d-dimensional simplicial complex. $\gamma \subseteq \Sigma$ is a simplicial spanning tree of Σ when:
0. $\Upsilon_{(d-1)}=\Sigma_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(\Upsilon)=f_{d}(\Sigma)-\tilde{\beta}_{d}(\Sigma)+\tilde{\beta}_{d-1}(\Sigma)$ ("count").

- If 0 . holds, then any two of $1 ., 2 ., 3$. together imply the third condition.
- When $d=1$, coincides with usual definition.

Example

Bipyramid with equator, $\langle 123,124,125,134,135,234,235\rangle$

- $3+3$ SST's not containing face 123

Example

Bipyramid with equator, $\langle 123,124,125,134,135,234,235\rangle$

- $3+3$ SST's not containing face 123
- 3×3 SST's containing face 123

Example

Bipyramid with equator, $\langle 123,124,125,134,135,234,235\rangle$

- $3+3$ SST's not containing face 123
- 3×3 SST's containing face 123

Total is $\left(x_{1} x_{2} x_{3}\right)^{3}\left(x_{4} x_{5}\right)^{2}\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)$.

Simplicial Matrix-Tree Theorem — Version I

- Σ a d-dimensional "metaconnected" simplicial complex
- $(d-1)$-dimensional (up-down) Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}^{T}$
- $s_{d}=$ product of nonzero eigenvalues of L_{d-1}.

Theorem [DKM '09]

$$
h_{d}:=\sum_{\Upsilon \in S S T(\Sigma)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\Sigma)\right|^{2}
$$

Simplicial Matrix-Tree Theorem - Version II

- $\Gamma \in \operatorname{SST}\left(\Sigma_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial_{\Gamma}^{*}$

Theorem [DKM '09]

$$
h_{d}=\sum_{\Upsilon \in S S T(\Sigma)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{\left|\tilde{H}_{d-2}(\Sigma ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} L_{\Gamma} .
$$

Note: The $\left|\tilde{H}_{d-2}\right|$ terms are often trivial.

Weighted Simplicial Matrix-Tree Theorems

- Introduce an indeterminate x_{F} for each face $F \in \Delta$
- Weighted boundary ∂ : multiply column F of (usual) ∂ by x_{F}
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- Weighted reduced Laplacian $\mathrm{L}_{\Gamma}=\partial_{\Gamma} \partial_{\Gamma}^{*}$

Theorem [DKM '09]

$$
\begin{gathered}
\mathbf{h}_{d}:=\sum_{\Upsilon \in S S T(\Sigma)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2} \prod_{F \in \Upsilon} x_{F}^{2}=\frac{\mathbf{s}_{d}}{\mathbf{h}_{d-1}}\left|\tilde{H}_{d-2}(\Sigma)\right|^{2} \\
\mathbf{h}_{d}=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \mathbf{L}_{\Gamma} .
\end{gathered}
$$

A Very fine weighting

Example $F=235, x_{F}=x_{12} x_{23} x_{35}$

A Very fine weighting

Example $F=235, x_{F}=x_{12} x_{23} x_{35}$
To count spanning trees of shifted complexes with this weighting, we need a new interpretation of degree sequence, in terms of critical pairs:

$$
F \in \Delta, F-i \cup(i+1) \notin \Delta
$$

contributes an eigenvalue whose coarse weighting is i.

A Very fine weighting

Example $F=235, x_{F}=x_{12} x_{23} x_{35}$
To count spanning trees of shifted complexes with this weighting, we need a new interpretation of degree sequence, in terms of critical pairs:

$$
F \in \Delta, F-i \cup(i+1) \notin \Delta
$$

contributes an eigenvalue whose coarse weighting is i.
(Fun exercise is to convince yourself this does match transpose of degree sequence in coarse weighting.)

Critical pairs

What about matroids?

Weighted spanning tree enumerators for independence complexes of matroids seem to factor nicely, but not even a conjectured formula yet.

What about matroids?

Weighted spanning tree enumerators for independence complexes of matroids seem to factor nicely, but not even a conjectured formula yet.
Examples:

- $\{124,134,234,125,135,235\}:$

$$
\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right)^{2}\left(x_{1} x_{2} x_{3}\right)\left(x_{1}+x_{2}+x_{3}\right)\left(x_{4}+x_{5}\right)
$$

- $\{124,125,134,135,145,234,235,245\}:$

$$
\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right)^{3}\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)\left(x_{1}+x_{2}\right)\left(x_{4}+x_{5}\right)
$$

Cubical Complexes

Faces of Q_{n}, n-dimensional cube: $(0,1, *)$-strings of length n. Dimension is number of *'s.

Vertices: $(0,1)$-strings of length n
Edge in direction i : single ${ }^{*}$ in position i.
Boundary: faces with one * converted to 0 or 1 .

Cubical Complex: Subset of faces of Q_{n} such that if a face is included, then so is its boundary.

Spanning Trees

Let \mathcal{Q} be a d-dimensional cubical complex. $\Upsilon \subseteq \mathcal{Q}$ is a cubical spanning tree of \mathcal{Q} when:
0. $\Upsilon_{(d-1)}=\mathcal{Q}_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(\Upsilon)=f_{d}(\mathcal{Q})-\tilde{\beta}_{d}(\mathcal{Q})+\tilde{\beta}_{d-1}(\mathcal{Q})$ ("count").

- If 0 . holds, then any two of $1 ., 2 ., 3$. together imply the third condition.
- When $d=1$, coincides with usual definition.
- Works more generally for cellular complexes.

Example

The cubical biprism with equator, the boundary of $\left\langle{ }^{* * *} 0,{ }^{* *} 0^{*}\right\rangle$

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.

Example

The cubical biprism with equator, the boundary of $\left\langle{ }^{* * *} 0,{ }^{* *} 0^{*}\right\rangle$

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- $5+5$ spanning trees not containing face ${ }^{* *} 00$

Example

The cubical biprism with equator, the boundary of $\left\langle{ }^{* * *} 0,{ }^{* *} 0^{*}\right\rangle$

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- $5+5$ spanning trees not containing face ${ }^{* *} 00$
- 5×5 spanning trees containing face ${ }^{* *} 00$

Example

The cubical biprism with equator, the boundary of $\left\langle{ }^{* * *} 0,{ }^{* *} 0^{*}\right\rangle$

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- $5+5$ spanning trees not containing face ${ }^{* *} 00$
- 5×5 spanning trees containing face ${ }^{* *} 00$
- 35 spanning trees total

Laplacians

Definition The Laplacian matrix of d-dimensional cubical complex \mathcal{Q}, denoted by $L(\mathcal{Q})$.

Laplacians

Definition The
Laplacian matrix of d-dimensional cubical
complex \mathcal{Q}, denoted by $L(\mathcal{Q})$.

$$
\begin{aligned}
& L(\mathcal{Q})=\partial(\mathcal{Q}) \partial(\mathcal{Q})^{T} \\
& \quad \partial(\mathcal{Q})=\text { signed boundary matrix }
\end{aligned}
$$

Example biprism

	$00 * 0$	$01 * 0$	$0 * 00$	$0 * 10$	$10 * 0$	$00 * 0$	$11 * 0$	\ldots
$0 * * 0$								
$1 * * 0$								
$* 0 * 0$								
$* 1 * 0$								
$* * 00$								
$* * 10$								
\ldots								

Laplacians

Definition The reduced Laplacian matrix of d-dimensional cubical complex \mathcal{Q}, denoted by $L_{r}(\mathcal{Q})$.

$$
\begin{aligned}
& L(\mathcal{Q})=\partial(\mathcal{Q}) \partial(\mathcal{Q})^{T} \\
& \quad \partial(\mathcal{Q})=\text { signed boundary matrix }
\end{aligned}
$$

"Reduced": remove rows/columns corresponding to spanning tree of $(d-1)$-dimensional faces

Example biprism

	00*0	01*0	0*00	0*10	10*0	00*0	$11 * 0$
0**0							
1**0							
*0*0							
*1*0							
**00							
**10							

Cubical Matrix-Tree Theorem — Version I

Theorem [DKM] If \mathcal{Q} a d-dimensional "metaconnected" cubical complex; (d-1)-dimensional Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}{ }^{T}$; $s_{d}=$ product of nonzero eigenvalues of L_{d-1}, then

$$
h_{d}:=\sum_{\Upsilon \in C S T(\mathcal{Q})}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\mathcal{Q})\right|^{2}
$$

Cubical Matrix-Tree Theorem — Version I

Theorem [DKM] If \mathcal{Q} a d-dimensional "metaconnected" cubical complex;
$(d-1)$-dimensional Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}{ }^{T}$;
$s_{d}=$ product of nonzero eigenvalues of L_{d-1}, then

$$
h_{d}:=\sum_{\Upsilon \in \operatorname{CST}(\mathcal{Q})}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\mathcal{Q})\right|^{2}
$$

Corollary When all $\tilde{H}_{i}=0$, then $h_{d}=\prod_{i=0}^{d} s_{i}^{(-1)^{d-i}}$

Cubical Matrix-Tree Theorem — Version I

Theorem [DKM] If \mathcal{Q} a d-dimensional "metaconnected" cubical complex; $(d-1)$-dimensional Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}{ }^{T}$; $s_{d}=$ product of nonzero eigenvalues of L_{d-1}, then

$$
h_{d}:=\sum_{\Upsilon \in \operatorname{CST}(\mathcal{Q})}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\mathcal{Q})\right|^{2}
$$

Corollary When all $\tilde{H}_{i}=0$, then $h_{d}=\prod_{i=0}^{d} s_{i}^{(-1)^{d-i}}$
Example Biprism: $h_{d}=\frac{\left(7^{2} \cdot 5^{4} \cdot 4 \cdot 3^{2}\right)(12)}{\left(7 \cdot 5^{3} \cdot 4 \cdot 3^{3} \cdot 2^{2} \cdot 1\right)}=35$

Cubical Matrix-Tree Theorem — Version II

- $\Gamma \in \operatorname{CST}\left(\mathcal{Q}_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in 「
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial_{\Gamma}{ }^{T}$

Theorem [DKM]

$$
\left.h_{d}=\sum_{\Upsilon \in C S T(\mathcal{Q})}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{\left|\tilde{H}_{d-2}(\mathcal{Q} ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} L_{\Gamma} \right\rvert\, .
$$

Note: The $\left|\tilde{H}_{d-2}\right|$ terms are often trivial.

Skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_{n} are $2 i$ with multiplicity $\binom{n}{i} \times\binom{ i-1}{k-1}$ for $i=k, \ldots, n$ In particular, they are integers.

Skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_{n} are $2 i$ with multiplicity $\binom{n}{i} \times\binom{ i-1}{k-1}$ for $i=k, \ldots, n$ In particular, they are integers.
Corollary The number of cubical spanning trees of the k-skeleton of Q_{n} is

$$
\prod(2 j)^{\binom{n}{j}\binom{j-2}{k-1}}
$$

Skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_{n} are $2 i$ with multiplicity $\binom{n}{i} \times\binom{ i-1}{k-1}$ for $i=k, \ldots, n$ In particular, they are integers.
Corollary The number of cubical spanning trees of the k-skeleton of Q_{n} is

$$
\prod(2 j)^{\binom{n}{j}\binom{j-2}{k-1}}
$$

Example 4-cube

k	eigenvalues
4	8^{1}
3	$8^{3} 6^{4}$
2	$8^{3} 6^{8} 4^{6}$
1	$8^{1} 6^{4} 4^{6} 2^{4}$
$(0$	$\left.2^{4}\right)$

Weighted tree enumeration on skeleta of cubes

Conjecture

This weighted enumeration has a nice formula.
Example Spanning trees of 2-skeleton of 4-cube, with appropriate weighting:

$$
p(123) p(124) p(134) p(234) p(1234)^{2}
$$

where, for instance,

$$
p(123)=x_{1} x_{2} x_{3} y_{1} y_{2} y_{3}\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{y_{1}}+\frac{1}{y_{2}}+\frac{1}{y_{3}}\right)
$$

Shifted cubical complexes

Motivated by shifted simplicial complexes.
Given $\sigma \in Q_{n}=\{0,1, *\}^{n}$, let $\operatorname{dir}(\sigma)=\left\{i: \sigma_{i}=*\right\}$
A cubical complex $\mathcal{Q} \subseteq\{0,1, *\}^{n}$ on n directions is shifted if:

1. If $\tau \in \mathcal{Q}$ and $\operatorname{dir}(\sigma)<\operatorname{dir}(\tau)$ (componentwise partial order), then $\sigma \in \mathcal{Q}$.

Shifted cubical complexes

Motivated by shifted simplicial complexes.
Given $\sigma \in Q_{n}=\{0,1, *\}^{n}$, let $\operatorname{dir}(\sigma)=\left\{i: \sigma_{i}=*\right\}$
A cubical complex $\mathcal{Q} \subseteq\{0,1, *\}^{n}$ on n directions is shifted if:

1. If $\tau \in \mathcal{Q}$ and $\operatorname{dir}(\sigma)<\operatorname{dir}(\tau)$ (componentwise partial order), then $\sigma \in \mathcal{Q}$.
2. If $\sigma \in \mathcal{Q}$, and $\operatorname{dir}(\sigma)=\operatorname{dir}(\tau)$, then $\tau \in \mathcal{Q}$.

Shifted cubical complexes

Motivated by shifted simplicial complexes.
Given $\sigma \in Q_{n}=\{0,1, *\}^{n}$, let $\operatorname{dir}(\sigma)=\left\{i: \sigma_{i}=*\right\}$
A cubical complex $\mathcal{Q} \subseteq\{0,1, *\}^{n}$ on n directions is shifted if:

1. If $\tau \in \mathcal{Q}$ and $\operatorname{dir}(\sigma)<\operatorname{dir}(\tau)$ (componentwise partial order), then $\sigma \in \mathcal{Q}$.
2. If $\sigma \in \mathcal{Q}$, and $\operatorname{dir}(\sigma)=\operatorname{dir}(\tau)$, then $\tau \in \mathcal{Q}$.
3. If $|\operatorname{dir}(\sigma)|=1$, then $\sigma \in \mathcal{Q}$.

Shifted cubical complexes

Motivated by shifted simplicial complexes.
Given $\sigma \in Q_{n}=\{0,1, *\}^{n}$, let $\operatorname{dir}(\sigma)=\left\{i: \sigma_{i}=*\right\}$
A cubical complex $\mathcal{Q} \subseteq\{0,1, *\}^{n}$ on n directions is shifted if: 1. If $\tau \in \mathcal{Q}$ and $\operatorname{dir}(\sigma)<\operatorname{dir}(\tau)$ (componentwise partial order), then $\sigma \in \mathcal{Q}$.
2. If $\sigma \in \mathcal{Q}$, and $\operatorname{dir}(\sigma)=\operatorname{dir}(\tau)$, then $\tau \in \mathcal{Q}$.
3. If $|\operatorname{dir}(\sigma)|=1$, then $\sigma \in \mathcal{Q}$.

Example

***00	***01	***10	***11
$* * 0 * 0$	$* * 0 * 1$	$* * 1 * 0$	**1*1
**00*	**01*	$* * 10 *$	**11*
$* 0 * * 0$	* ${ }^{*} * 1$	*1**0	$* 1 * * 1$
$* 0 * 0 *$	$* 0 * 1 *$	$* 1 * 0 *$	$* 1 * 1 *$
$0 * * * 0$	0***1	1***0	1***1
$0^{* *} 0^{*}$	$0^{* *} 1^{*}$	$1^{* *} 0^{*}$	$1 * * 1 *$

Laplacians

- Shifted cubical complexes have integral Laplacian spectrum.
- But the only formula we have is recursive (in terms of deletion and link).

Laplacians

- Shifted cubical complexes have integral Laplacian spectrum.
- But the only formula we have is recursive (in terms of deletion and link).

Open Question
Is there a nice closed formula, perhaps involving some new interpretation of degree sequence?

Laplacians

- Shifted cubical complexes have integral Laplacian spectrum.
- But the only formula we have is recursive (in terms of deletion and link).

Open Question

Is there a nice closed formula, perhaps involving some new interpretation of degree sequence?

- Eran Nevo recently found a nice closed formula for homotopy type, which gives the 0 eigenvalues.

Laplacians

- Shifted cubical complexes have integral Laplacian spectrum.
- But the only formula we have is recursive (in terms of deletion and link).

Open Question

Is there a nice closed formula, perhaps involving some new interpretation of degree sequence?

- Eran Nevo recently found a nice closed formula for homotopy type, which gives the 0 eigenvalues.
- One possible strategy, then: Use the 0's and recursion to concoct a formula.

Extremality of shifted cubical complexes

Open Question

Shifted simplicial complexes are extremal in several ways (including f-vectors, algebraic shifting). Are shifted cubical complexes extremal in any way?

