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Spanning Trees of Graph G = (V , E )

T ⊆ E is a spanning tree of G when:

0. T contains all of V (T0 = V )

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. |T | = n − 1

Note: If 0. holds, then any two of 1., 2., 3. together imply the
third condition.

Duval, Klivans, Martin Spanning Trees and Laplacians of Cubical Complexes



Graphs
Cubical Complexes

Examples

Spanning Trees
Laplacians
Matrix-Tree Theorems

Laplacian

Definition The

reduced

Laplacian matrix of graph G , denoted by
L

r

(G ).

Defn 1: L(G ) = D(G )− A(G )

D(G ) = diag(deg v1, . . . , deg vn)

A(G ) = adjacency matrix

Defn 2: L(G ) = ∂(G )∂(G )T

∂(G ) = incidence matrix (boundary matrix)

“Reduced”: remove rows/columns corresponding to any one vertex
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Example

r r
rr��

�
� 1

2

3

4 ∂ =

12 13 14 23 24

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2
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Matrix-Tree Theorems

Version I Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then
G has

λ1λ2 · · ·λn−1

n

spanning trees.

Version II G has | det Lr (G )| spanning trees
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Cubical Complexes

Faces of Qn, n-dimensional cube: (0, 1, ∗)-strings of length
n. Dimension is number of *’s.

Vertices: (0, 1)-strings of length n

Edge in direction i : single * in position i .

Boundary: faces with one * converted to 0 or 1.

*0

0* ** 1*

*1

Cubical Complex: Subset of faces of Qn such that if a face is
included, then so is its boundary.
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Spanning Trees

Let Q be a d-dimensional cubical complex.
Υ ⊆ Q is a cubical spanning tree of Q when:

0. Υ(d−1) = Q(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(Q)− β̃d(Q) + β̃d−1(Q) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.

I Works more generally for cellular complexes.
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Example

The cubical biprism with equator, the boundary of 〈 ***0, **0* 〉

This is the part where you look at
the pretty ZomeTool model

I Let’s count the spanning trees.

I 5 + 5 spanning trees not containing face **00

I 5× 5 spanning trees containing face **00

I 35 spanning trees total
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Laplacians
Definition The

reduced

Laplacian matrix of d-dimensional cubical
complex Q, denoted by L

r

(Q).

L(Q) = ∂(Q)∂(Q)T

∂(Q) = signed boundary matrix

“Reduced”: remove rows/columns corresponding to spanning tree
of (d − 1)-dimensional faces
Example biprism

00*0 01*0 0*00 0*10 10*0 00*0 11*0 . . .

0**0
1**0
*0*0
*1*0
**00
**10
. . .
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Cubical Matrix-Tree Theorem — Version I

Theorem If Q a d-dimensional “metaconnected” cubical
complex;
(d − 1)-dimensional Laplacian Ld−1 = ∂d−1∂d−1

T ;
sd = product of nonzero eigenvalues of Ld−1, then

hd :=
∑

Υ∈CST (Q)

|H̃d−1(Υ)|2 =
sd

hd−1
|H̃d−2(Q)|2

Corollary When all H̃i = 0, then hd =
∏d

i=0 s
(−1)d−i

i

Example Biprism: hd = (72·54·4·32)(12)
(7·53·4·33·22·1)

= 35
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Cubical Matrix-Tree Theorem — Version II

I Γ ∈ CST (Q(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂Γ
T

Theorem [DKM]

hd =
∑

Υ∈CST (Q)

|H̃d−1(Υ)|2 =
|H̃d−2(Q; Z)|2

|H̃d−2(Γ; Z)|2
| det LΓ|.

Note: The |H̃d−2| terms are often trivial.
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Prisms

Definition If Q is a cubical complex, then PQ, the prism over Q
is the cubical complex

{∗, 0, 1} × Q

in other words, for each string in Q, make three new
strings by putting *, 0, or 1 in front.

Eigenvalues s(PQ) = 2 + s(Q).

Example (see the Zome Tools again!) Eigenvalues:

2 squares 5332100

prism 7554322
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Eigenvalues of skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Qn are
2i with multiplicity

(n
i

)
×
( i−1
k−1

)
for i = k , . . . , n

In particular, they are integers.

Corollary The number of cubical spanning trees of the
k-skeleton of Qn is∏

(2j)(n
j)( j−2

k−1).

Example 4-cube
k eigenvalues

4 81

3 8364

2 836846

1 81644624

(0 24)
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Shifted cubical complexes
Motivated by shifted simplicial complexes.
Given σ ∈ Qn = {0, 1, ∗}n, let dir(σ) = {i : σi = ∗}
A cubical complex Q ⊆ {0, 1, ∗}n on n directions is shifted if:

1. If τ ∈ Q and dir(σ) < dir(τ) (componentwise partial order),
then σ ∈ Q.

2. If σ ∈ Q, and dir(σ) = dir(τ), then τ ∈ Q.

3. If |dir(σ)| = 1, then σ ∈ Q.

Example
***00 ***01 ***10 ***11
**0*0 **0*1 **1*0 **1*1
**00* **01* **10* **11*
*0**0 *0**1 *1**0 *1**1
*0*0* *0*1* *1*0* *1*1*
0***0 0***1 1***0 1***1
0**0* 0**1* 1**0* 1**1*
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Near-Prisms

Definitions I delQ[i ] := {σ − σi : σ ∈ Q, σi 6= ∗}
I linkQ[i ] := {σ − σi : σ ∈ Q, σi = ∗}
I Q is a near-prism (in direction i) if

I the boundary of del [i ] is contained in link[i ].
I 0idel [i ] ∪ 1idel [i ] ⊆ Q

Example Biprism is union of:

I prism over two open square (all faces using
direction 1)

I four additional faces at ends (all faces not using
direction 1)

Theorem (easy): A cubical complex is shifted iff it is a
near-prism in direction 1, and its del[1] and link[1]
are also shifted.
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Laplacians

Theorem If Q is a near-prism in direction 1, then its
(top-dimensional) Laplacian non-0 eigenvalues s are
given by

s(Q) = s(del [1])∪ (2|link[1]|+ (s(del [1])∪ s(link[1]))).

Example Biprism. del[1] is {∗0∗, ∗ ∗ 0}, eigenvalues 53 link[1]
is boundary of del[1], eigenvalues 53321

s = 53 ∪ (27 + (53 ∪ 53321))

= 53 ∪ (27 + 5533321) = 53 ∪ 7755543 = 775555433

Corollary Shifted cubical complexes are Laplacian integral.
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Open Questions

I Shifted simplicial complexes have a nice formula for the
Laplacian eigenvalues (transpose of degree sequence). Is there
a formula for shifted cubical complexes?

I The homology of shifted simplicial complexes (number of 0
eigenvalues) is easy to describe combinatorially. Can we do
the same for shifted cubical complexes?

I Shifted simplicial complexes are extremal in several ways
(including f -vectors, algebraic shifting). Are shifted cubical
complexes extremal in any way?
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