Spanning Trees and Laplacians of Cubical Complexes

Art Duval¹ Caroline Klivans² Jeremy Martin³

¹University of Texas at El Paso

²University of Chicago

³University of Kansas

CombinaTexas University of Houston April 25, 2009

< 日 > < 同 > < 三 > < 三 >

Spanning Trees of Graph G = (V, E)

- $T \subseteq E$ is a **spanning tree** of *G* when:
 - 0. T contains all of V ($T_0 = V$)
 - 1. connected $(\tilde{H}_0(T) = 0)$
 - 2. no cycles $(\tilde{H}_1(T) = 0)$

3.
$$|T| = n - 1$$

Note: If 0. holds, then any two of 1., 2., 3. together imply the third condition.

イロト イポト イラト イラト

Graphs Spanning Trees Cubical Complexes Laplacians Examples Matrix-Tree Theore

Laplacian

Definition The L(G).

Laplacian matrix of graph G, denoted by

イロト イポト イヨト イヨト

э

Laplacian

Definition The Laplacian matrix of graph G, denoted by L (G). Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\text{deg } v_1, \dots, \text{deg } v_n)$ A(G) = adjacency matrix

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Laplacian

Definition The Laplacian matrix of graph G, denoted by L (G). Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\text{deg } v_1, \dots, \text{deg } v_n)$ A(G) = adjacency matrixDefn 2: $L(G) = \partial(G)\partial(G)^T$ $\partial(G) = \text{incidence matrix (boundary matrix)}$

(日) (同) (三) (三)

Laplacian

Definition The reduced Laplacian matrix of graph *G*, denoted by $L_r(G)$. Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\text{deg } v_1, \dots, \text{deg } v_n)$ A(G) = adjacency matrixDefn 2: $L(G) = \partial(G)\partial(G)^T$ $\partial(G) = \text{incidence matrix (boundary matrix)}$

"Reduced": remove rows/columns corresponding to any one vertex

(日) (同) (三) (三)

Graphs Spanning Trees Cubical Complexes Examples Matrix-Tree Th

Example

<ロ> <同> <同> < 同> < 同>

э

Spanning Trees Laplacians Matrix-Tree Theorems

Matrix-Tree Theorems

Version I Let $0, \lambda_1, \lambda_2, \dots, \lambda_{n-1}$ be the eigenvalues of L. Then *G* has $\lambda_1 \lambda_2 \cdots \lambda_{n-1}$

spanning trees.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Spanning Trees Laplacians Matrix-Tree Theorems

Matrix-Tree Theorems

Version I Let $0, \lambda_1, \lambda_2, \dots, \lambda_{n-1}$ be the eigenvalues of L. Then *G* has $\lambda_1 \lambda_2 \cdots \lambda_{n-1}$

п

spanning trees.

Version II G has $|\det L_r(G)|$ spanning trees

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Cubical Complexes

Faces of Q_n, n-dimensional cube: (0,1,*)-strings of length n. Dimension is number of *'s.
Vertices: (0,1)-strings of length n
Edge in direction i: single * in position i.
Boundary: faces with one * converted to 0 or 1.

Cubical Complex: Subset of faces of Q_n such that if a face is included, then so is its boundary.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spanning Trees

Let Q be a *d*-dimensional cubical complex. $\Upsilon \subseteq Q$ is a **cubical spanning tree** of Q when:

0.
$$\Upsilon_{(d-1)} = \mathcal{Q}_{(d-1)}$$
 ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");

2.
$$\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$$
 ("acyclic");

- 3. $f_d(\Upsilon) = f_d(\mathcal{Q}) \tilde{\beta}_d(\mathcal{Q}) + \tilde{\beta}_{d-1}(\mathcal{Q})$ ("count").
 - If 0. holds, then any two of 1., 2., 3. together imply the third condition.
 - When d = 1, coincides with usual definition.
 - Works more generally for cellular complexes.

(日)

Example

The cubical biprism with equator, the boundary of \langle ***0, **0* \rangle

This is the part where you look at the pretty ZomeTool model

Let's count the spanning trees.

- 4 同 ト 4 ヨ ト 4 ヨ

Example

The cubical biprism with equator, the boundary of \langle ***0, **0* \rangle

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- ▶ 5 + 5 spanning trees not containing face ******00

- 4 回 ト 4 ヨト 4 ヨト

Example

The cubical biprism with equator, the boundary of \langle ***0, **0* \rangle

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- ▶ 5 + 5 spanning trees not containing face ******00
- 5×5 spanning trees containing face **00

- 4 回 ト 4 ヨト 4 ヨト

Example

The cubical biprism with equator, the boundary of \langle ***0, **0* \rangle

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- ▶ 5 + 5 spanning trees not containing face **00
- 5×5 spanning trees containing face **00
- 35 spanning trees total

- 4 回 ト 4 ヨト 4 ヨト

Laplacians

Definition The Laplacian matrix of *d*-dimensional cubical complex Q, denoted by L(Q).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Laplacians

Definition The Laplacian matrix of *d*-dimensional cubical complex Q, denoted by L(Q). $L(Q) = \partial(Q)\partial(Q)^T$ $\partial(Q) = \text{signed boundary matrix}$

Example biprism

Laplacians

Definition The reduced Laplacian matrix of *d*-dimensional cubical complex Q, denoted by $L_r(Q)$. $L(Q) = \partial(Q)\partial(Q)^T$ $\partial(Q) = \text{signed boundary matrix}$ "Reduced": remove rows/columns corresponding to spanning tree of (d-1)-dimensional faces

Example biprism

Cubical Matrix-Tree Theorem — Version I

Theorem If Q a *d*-dimensional "metaconnected" cubical complex;

(d-1)-dimensional Laplacian $L_{d-1} = \partial_{d-1} \partial_{d-1}^{T}$; s_d = product of nonzero eigenvalues of L_{d-1} , then

$$h_d := \sum_{\Upsilon \in CST(\mathcal{Q})} | ilde{H}_{d-1}(\Upsilon)|^2 = rac{s_d}{h_{d-1}} | ilde{H}_{d-2}(\mathcal{Q})|^2$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cubical Matrix-Tree Theorem — Version I

Theorem If Q a *d*-dimensional "metaconnected" cubical complex;

(d-1)-dimensional Laplacian $L_{d-1} = \partial_{d-1}\partial_{d-1}$; s_d = product of nonzero eigenvalues of L_{d-1} , then

$$h_d := \sum_{\Upsilon \in CST(\mathcal{Q})} | ilde{H}_{d-1}(\Upsilon)|^2 = rac{s_d}{h_{d-1}} | ilde{H}_{d-2}(\mathcal{Q})|^2$$

Corollary When all $\tilde{H}_i = 0$, then $h_d = \prod_{i=0}^d s_i^{(-1)^{d-i}}$

(日) (同) (三) (三)

Cubical Matrix-Tree Theorem — Version I

Theorem If Q a d-dimensional "metaconnected" cubical complex;

(d-1)-dimensional Laplacian $L_{d-1} = \partial_{d-1}\partial_{d-1}$; s_d = product of nonzero eigenvalues of L_{d-1} , then

$$h_d := \sum_{\Upsilon \in CST(\mathcal{Q})} | ilde{H}_{d-1}(\Upsilon)|^2 = rac{s_d}{h_{d-1}} | ilde{H}_{d-2}(\mathcal{Q})|^2$$

Corollary When all $\tilde{H}_i = 0$, then $h_d = \prod_{i=0}^d s_i^{(-1)^{d-i}}$ Example Biprism: $h_d = \frac{(7^2 \cdot 5^4 \cdot 4 \cdot 3^2)(12)}{(7 \cdot 5^3 \cdot 4 \cdot 3^3 \cdot 2^2 \cdot 1)} = 35$

・ロト ・同ト ・ヨト ・ヨト

Cubical Matrix-Tree Theorem — Version II

►
$$\Gamma \in CST(\mathcal{Q}_{(d-1)})$$

- ∂_{Γ} = restriction of ∂_d to faces not in Γ
- reduced Laplacian $L_{\Gamma} = \partial_{\Gamma} \partial_{\Gamma}^{T}$

Theorem [DKM]

$$h_d = \sum_{\Upsilon \in CST(\mathcal{Q})} |\tilde{H}_{d-1}(\Upsilon)|^2 = \frac{|\tilde{H}_{d-2}(\mathcal{Q};\mathbb{Z})|^2}{|\tilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} |\det L_{\Gamma}|.$$

Note: The $|\tilde{H}_{d-2}|$ terms are often trivial.

・ロト ・同ト ・ヨト ・ヨト

Prisms

Definition If Q is a cubical complex, then PQ, the prism over Q is the cubical complex

 $\{*,0,1\}\times \mathcal{Q}$

in other words, for each string in \mathcal{Q} , make three new strings by putting *, 0, or 1 in front.

(日) (同) (三) (三)

3

Prisms

Definition If Q is a cubical complex, then PQ, the prism over Q is the cubical complex

 $\{*,0,1\}\times \mathcal{Q}$

in other words, for each string in Q, make three new strings by putting *, 0, or 1 in front. Eigenvalues s(PQ) = 2 + s(Q).

(日) (同) (三) (三)

Prisms

Definition If Q is a cubical complex, then PQ, the prism over Q is the cubical complex

 $\{*,0,1\}\times \mathcal{Q}$

in other words, for each string in Q, make three new strings by putting *, 0, or 1 in front.

Eigenvalues s(PQ) = 2 + s(Q).

Example (see the Zome Tools again!) Eigenvalues:

2 squares	5332100
prism	7554322

(日) (同) (三) (三)

Eigenvalues of skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_n are 2i with multiplicity $\binom{n}{i} \times \binom{i-1}{k-1}$ for $i = k, \ldots, n$ In particular, they are integers.

Eigenvalues of skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_n are 2i with multiplicity $\binom{n}{i} \times \binom{i-1}{k-1}$ for $i = k, \ldots, n$ In particular, they are integers.

Corollary The number of cubical spanning trees of the k-skeleton of Q_n is

$$\prod (2j)^{\binom{n}{j}\binom{j-2}{k-1}}.$$

- 4 同 2 4 日 2 4 日 2

Eigenvalues of skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_n are 2i with multiplicity $\binom{n}{i} \times \binom{i-1}{k-1}$ for $i = k, \ldots, n$ In particular, they are integers.

Corollary The number of cubical spanning trees of the k-skeleton of Q_n is

$$\prod (2j)^{\binom{n}{j}\binom{j-2}{k-1}}.$$

Example 4-cube

$$\begin{array}{c|c} k & \text{eigenvalues} \\ \hline 4 & 8^1 \\ 3 & 8^3 6^4 \\ 2 & 8^3 6^8 4^6 \\ 1 & 8^1 6^4 4^6 2^4 \\ (0 & 2^4) \end{array}$$

- 4 同 6 4 日 6 4 日 6

Skeleta of cubes Shifted cubical complexes

Shifted cubical complexes

Motivated by shifted simplicial complexes.

Given $\sigma \in Q_n = \{0, 1, *\}^n$, let $dir(\sigma) = \{i \colon \sigma_i = *\}$

A cubical complex $\mathcal{Q} \subseteq \{0, 1, *\}^n$ on *n* directions is **shifted** if:

1. If $\tau \in Q$ and $dir(\sigma) < dir(\tau)$ (componentwise partial order), then $\sigma \in Q$.

Skeleta of cubes Shifted cubical complexes

Shifted cubical complexes

Motivated by shifted simplicial complexes. Given $\sigma \in Q_n = \{0, 1, *\}^n$, let $dir(\sigma) = \{i : \sigma_i = *\}$ A cubical complex $Q \subseteq \{0, 1, *\}^n$ on *n* directions is **shifted** if:

- 1. If $\tau \in Q$ and $dir(\sigma) < dir(\tau)$ (componentwise partial order), then $\sigma \in Q$.
- 2. If $\sigma \in Q$, and $dir(\sigma) = dir(\tau)$, then $\tau \in Q$.

< ロ > < 同 > < 回 > < 回 >

Skeleta of cubes Shifted cubical complexes

Shifted cubical complexes

Motivated by shifted simplicial complexes. Given $\sigma \in Q_n = \{0, 1, *\}^n$, let $dir(\sigma) = \{i : \sigma_i = *\}$ A cubical complex $Q \subseteq \{0, 1, *\}^n$ on *n* directions is **shifted** if:

- 1. If $\tau \in Q$ and $dir(\sigma) < dir(\tau)$ (componentwise partial order), then $\sigma \in Q$.
- 2. If $\sigma \in Q$, and $dir(\sigma) = dir(\tau)$, then $\tau \in Q$.
- 3. If $|dir(\sigma)| = 1$, then $\sigma \in Q$.

・ロト ・同ト ・ヨト ・ヨト

Shifted cubical complexes

Motivated by shifted simplicial complexes. Given $\sigma \in Q_n = \{0, 1, *\}^n$, let $dir(\sigma) = \{i : \sigma_i = *\}$ A cubical complex $Q \subseteq \{0, 1, *\}^n$ on *n* directions is **shifted** if:

1. If $\tau \in Q$ and $dir(\sigma) < dir(\tau)$ (componentwise partial order), then $\sigma \in Q$.

2. If
$$\sigma\in\mathcal{Q}$$
, and $\mathit{dir}(\sigma)=\mathit{dir}(au)$, then $au\in\mathcal{Q}$.

3. If
$$|dir(\sigma)| = 1$$
, then $\sigma \in \mathcal{Q}$.

Example

***00	***01	***10	***11
**0*0	**0*1	**1*0	**1*1
**00*	**01*	**10*	**11*
*0**0	*0**1	*1**0	*1**1
*0*0*	*0*1*	*1*0*	*1*1*
0***0	0***1	1***0	1***1
0**0*	0**1*	1**0*	1**1*

- 4 同 2 4 日 2 4 日 2

Skeleta of cubes Shifted cubical complexes

Near-Prisms

Definitions

- ► $del_{\mathcal{Q}}[i] := \{\sigma \sigma_i : \sigma \in \mathcal{Q}, \sigma_i \neq *\}$ ► $link_{\mathcal{Q}}[i] := \{\sigma - \sigma_i : \sigma \in \mathcal{Q}, \sigma_i = *\}$
- Q is a near-prism (in direction i) if
 - the boundary of del[i] is contained in link[i].
 - $0^i del[i] \cup 1^i del[i] \subseteq Q$

Example Biprism is union of:

- prism over two open square (all faces using direction 1)
- four additional faces at ends (all faces not using direction 1)
- Theorem (easy): A cubical complex is shifted iff it is a near-prism in direction 1, and its del[1] and link[1] are also shifted.

(日) (同) (三) (三)

Skeleta of cubes

Laplacians

Theorem If Q is a near-prism in direction 1, then its (top-dimensional) Laplacian non-0 eigenvalues s are given by

 $s(Q) = s(del[1]) \cup (2^{|link[1]|} + (s(del[1]) \cup s(link[1]))).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Skeleta of cubes

Laplacians

Theorem If Q is a near-prism in direction 1, then its (top-dimensional) Laplacian non-0 eigenvalues s are given by

$$s(\mathcal{Q}) = s(del[1]) \cup (2^{|link[1]|} + (s(del[1]) \cup s(link[1]))).$$

Example Biprism. del[1] is {*0*, * * 0}, eigenvalues 53 link[1] is boundary of del[1], eigenvalues 53321

 $s = 53 \cup (2^7 + (53 \cup 53321))$ = 53 \cup (2^7 + 5533321) = 53 \cup 7755543 = 775555433

(日) (同) (日) (日) (日)

Skeleta of cubes Shifted cubical complexes

Laplacians

Theorem If Q is a near-prism in direction 1, then its (top-dimensional) Laplacian non-0 eigenvalues s are given by

 $s(Q) = s(del[1]) \cup (2^{|link[1]|} + (s(del[1]) \cup s(link[1]))).$

Example Biprism. del[1] is {*0*, * * 0}, eigenvalues 53 link[1] is boundary of del[1], eigenvalues 53321

> $s = 53 \cup (2^7 + (53 \cup 53321))$ = 53 \cup (2^7 + 5533321) = 53 \cup 7755543 = 775555433

Corollary Shifted cubical complexes are Laplacian integral.

イロト 不得 トイヨト イヨト 二日

Open Questions

Shifted simplicial complexes have a nice formula for the Laplacian eigenvalues (transpose of degree sequence). Is there a formula for shifted cubical complexes?

Open Questions

- Shifted simplicial complexes have a nice formula for the Laplacian eigenvalues (transpose of degree sequence). Is there a formula for shifted cubical complexes?
- The homology of shifted simplicial complexes (number of 0 eigenvalues) is easy to describe combinatorially. Can we do the same for shifted cubical complexes?

・ロト ・同ト ・ヨト ・ヨト

Open Questions

- Shifted simplicial complexes have a nice formula for the Laplacian eigenvalues (transpose of degree sequence). Is there a formula for shifted cubical complexes?
- The homology of shifted simplicial complexes (number of 0 eigenvalues) is easy to describe combinatorially. Can we do the same for shifted cubical complexes?
- Shifted simplicial complexes are extremal in several ways (including *f*-vectors, algebraic shifting). Are shifted cubical complexes extremal in any way?

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >