Spanning Trees and Laplacians of Cubical Complexes

Art Duval ${ }^{1} \quad$ Caroline Klivans ${ }^{2}$ Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ University of Chicago
${ }^{3}$ University of Kansas
CombinaTexas
University of Houston
April 25, 2009

Spanning Trees of Graph $G=(V, E)$

$T \subseteq E$ is a spanning tree of G when:
0. T contains all of $V\left(T_{0}=V\right)$

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: If 0 . holds, then any two of $1 ., 2 ., 3$. together imply the third condition.

Laplacian

Definition The
Laplacian matrix of graph G, denoted by
$L(G)$.

Laplacian

Definition The
Laplacian matrix of graph G, denoted by
$L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Laplacian

Definition The
Laplacian matrix of graph G, denoted by $L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

Laplacian

Definition The reduced Laplacian matrix of graph G, denoted by $L_{r}(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

"Reduced": remove rows/columns corresponding to any one vertex

Example

$\partial=$| | 12 | 13 | 14 | 23 | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | 0 | 0 |
| 2 | 1 | 0 | 0 | -1 | -1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 0 | 1 | 0 | 1 |

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
$$

Matrix-Tree Theorems

Version I Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then G has

$$
\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

spanning trees.

Matrix-Tree Theorems

Version I Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then G has

$$
\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

spanning trees.
Version II G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees

Cubical Complexes

Faces of Q_{n}, n-dimensional cube: $(0,1, *)$-strings of length
n. Dimension is number of *'s.
Vertices: $(0,1)$-strings of length n
Edge in direction i : single ${ }^{*}$ in position i.
Boundary: faces with one * converted to 0 or 1 .

Cubical Complex: Subset of faces of Q_{n} such that if a face is included, then so is its boundary.

Spanning Trees

Let \mathcal{Q} be a d-dimensional cubical complex.
$\Upsilon \subseteq \mathcal{Q}$ is a cubical spanning tree of \mathcal{Q} when:
0. $\Upsilon_{(d-1)}=\mathcal{Q}_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(\Upsilon)=f_{d}(\mathcal{Q})-\tilde{\beta}_{d}(\mathcal{Q})+\tilde{\beta}_{d-1}(\mathcal{Q})$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $d=1$, coincides with usual definition.
- Works more generally for cellular complexes.

Example

The cubical biprism with equator, the boundary of $\left\langle{ }^{* * *} 0,{ }^{* *} 0^{*}\right\rangle$

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.

Example

The cubical biprism with equator, the boundary of $\left\langle{ }^{* * *} 0,{ }^{* *} 0^{*}\right\rangle$

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- $5+5$ spanning trees not containing face ${ }^{* *} 00$

Example

The cubical biprism with equator, the boundary of $\left\langle{ }^{* * *} 0,{ }^{* *} 0^{*}\right\rangle$

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- $5+5$ spanning trees not containing face **00
- 5×5 spanning trees containing face ${ }^{* *} 00$

Example

The cubical biprism with equator, the boundary of $\left\langle{ }^{* * *} 0,{ }^{* *} 0^{*}\right\rangle$

This is the part where you look at the pretty ZomeTool model

- Let's count the spanning trees.
- $5+5$ spanning trees not containing face **00
- 5×5 spanning trees containing face ${ }^{* *} 00$
- 35 spanning trees total

Laplacians

Definition The
Laplacian matrix of d-dimensional cubical complex \mathcal{Q}, denoted by $L(\mathcal{Q})$.

Laplacians

Definition The
Laplacian matrix of d-dimensional cubical complex \mathcal{Q}, denoted by $L(\mathcal{Q})$.

$$
\begin{aligned}
& L(\mathcal{Q})=\partial(\mathcal{Q}) \partial(\mathcal{Q})^{T} \\
& \quad \partial(\mathcal{Q})=\text { signed boundary matrix }
\end{aligned}
$$

Example biprism

	00*0	01*0	0*00	0*10	$10^{*} 0$	00*0	$11^{*} 0$	
0**0								
$1 * * 0$								
*0*0								
*1*0								
**00								
**10								

Laplacians

Definition The reduced Laplacian matrix of d-dimensional cubical complex \mathcal{Q}, denoted by $L_{r}(\mathcal{Q})$.

$$
\begin{aligned}
& L(\mathcal{Q})=\partial(\mathcal{Q}) \partial(\mathcal{Q})^{T} \\
& \quad \partial(\mathcal{Q})=\text { signed boundary matrix }
\end{aligned}
$$

"Reduced": remove rows/columns corresponding to spanning tree of $(d-1)$-dimensional faces
Example biprism

	$00 * 0$	$01 * 0$	$0 * 00$	$0 * 10$	$10 * 0$	$00 * 0$	$11^{*} 0$	\ldots
$0 * *$								

Cubical Matrix-Tree Theorem - Version I

Theorem If \mathcal{Q} a d-dimensional "metaconnected" cubical complex;
$(d-1)$-dimensional Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}{ }^{T}$;
$s_{d}=$ product of nonzero eigenvalues of L_{d-1}, then

$$
h_{d}:=\sum_{\Upsilon \in \operatorname{CST}(\mathcal{Q})}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\mathcal{Q})\right|^{2}
$$

Cubical Matrix-Tree Theorem - Version I

Theorem If \mathcal{Q} a d-dimensional "metaconnected" cubical complex;
$(d-1)$-dimensional Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}{ }^{T}$;
$s_{d}=$ product of nonzero eigenvalues of L_{d-1}, then

$$
h_{d}:=\sum_{\Upsilon \in \operatorname{CST}(\mathcal{Q})}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\mathcal{Q})\right|^{2}
$$

Corollary When all $\tilde{H}_{i}=0$, then $h_{d}=\prod_{i=0}^{d} s_{i}^{(-1)^{d-i}}$

Cubical Matrix-Tree Theorem - Version I

Theorem If \mathcal{Q} a d-dimensional "metaconnected" cubical complex;
$(d-1)$-dimensional Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}{ }^{T}$;
$s_{d}=$ product of nonzero eigenvalues of L_{d-1}, then

$$
h_{d}:=\sum_{\Upsilon \in \operatorname{CST}(\mathcal{Q})}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\mathcal{Q})\right|^{2}
$$

Corollary When all $\tilde{H}_{i}=0$, then $h_{d}=\prod_{i=0}^{d} s_{i}^{(-1)^{d-i}}$
Example Biprism: $h_{d}=\frac{\left(7^{2} \cdot 5^{4} \cdot 4 \cdot 3^{2}\right)(12)}{\left(7 \cdot 5^{3} \cdot 4 \cdot 3^{3} \cdot 2^{2} \cdot 1\right)}=35$

Cubical Matrix-Tree Theorem — Version II

- $\Gamma \in \operatorname{CST}\left(\mathcal{Q}_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial_{\Gamma}{ }^{T}$

Theorem [DKM]

$$
h_{d}=\sum_{\Upsilon \in C S T(\mathcal{Q})}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{\left|\tilde{H}_{d-2}(\mathcal{Q} ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}}\left|\operatorname{det} L_{\Gamma}\right| .
$$

Note: The $\left|\tilde{H}_{d-2}\right|$ terms are often trivial.

Prisms

Definition If \mathcal{Q} is a cubical complex, then $P \mathcal{Q}$, the prism over \mathcal{Q} is the cubical complex

$$
\{*, 0,1\} \times \mathcal{Q}
$$

in other words, for each string in \mathcal{Q}, make three new strings by putting *, 0 , or 1 in front.

Prisms

Definition If \mathcal{Q} is a cubical complex, then $P \mathcal{Q}$, the prism over \mathcal{Q} is the cubical complex

$$
\{*, 0,1\} \times \mathcal{Q}
$$

in other words, for each string in \mathcal{Q}, make three new strings by putting *, 0 , or 1 in front.
Eigenvalues $s(P \mathcal{Q})=2+s(\mathcal{Q})$.

Prisms

Definition If \mathcal{Q} is a cubical complex, then $P \mathcal{Q}$, the prism over \mathcal{Q} is the cubical complex

$$
\{*, 0,1\} \times \mathcal{Q}
$$

in other words, for each string in \mathcal{Q}, make three new strings by putting *, 0 , or 1 in front.
Eigenvalues $s(P \mathcal{Q})=2+s(\mathcal{Q})$.
Example (see the Zome Tools again!) Eigenvalues:

2 squares	5332100
prism	7554322

Eigenvalues of skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_{n} are $2 i$ with multiplicity $\binom{n}{i} \times\binom{ i-1}{k-1}$ for $i=k, \ldots, n$ In particular, they are integers.

Eigenvalues of skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_{n} are $2 i$ with multiplicity $\binom{n}{i} \times\binom{ i-1}{k-1}$ for $i=k, \ldots, n$ In particular, they are integers.
Corollary The number of cubical spanning trees of the k-skeleton of Q_{n} is

$$
\prod(2 j)^{\binom{n}{j}\binom{j-2}{k-1}} .
$$

Eigenvalues of skeleta of cubes

Theorem The non-0 eigenvalues of the k-skeleton of Q_{n} are $2 i$ with multiplicity $\binom{n}{i} \times\binom{ i-1}{k-1}$ for $i=k, \ldots, n$ In particular, they are integers.
Corollary The number of cubical spanning trees of the k-skeleton of Q_{n} is

$$
\prod(2 j)^{\binom{n}{j}\binom{j-2}{k-1}}
$$

Example 4-cube

k	eigenvalues
4	8^{1}
3	$8^{3} 6^{4}$
2	$8^{3} 6^{8} 4^{6}$
1	$8^{1} 6^{4} 4^{6} 2^{4}$
$(0$	$\left.2^{4}\right)$

Shifted cubical complexes

Motivated by shifted simplicial complexes.
Given $\sigma \in Q_{n}=\{0,1, *\}^{n}$, let $\operatorname{dir}(\sigma)=\left\{i: \sigma_{i}=*\right\}$
A cubical complex $\mathcal{Q} \subseteq\{0,1, *\}^{n}$ on n directions is shifted if:

1. If $\tau \in \mathcal{Q}$ and $\operatorname{dir}(\sigma)<\operatorname{dir}(\tau)$ (componentwise partial order), then $\sigma \in \mathcal{Q}$.

Shifted cubical complexes

Motivated by shifted simplicial complexes.
Given $\sigma \in Q_{n}=\{0,1, *\}^{n}$, let $\operatorname{dir}(\sigma)=\left\{i: \sigma_{i}=*\right\}$
A cubical complex $\mathcal{Q} \subseteq\{0,1, *\}^{n}$ on n directions is shifted if:

1. If $\tau \in \mathcal{Q}$ and $\operatorname{dir}(\sigma)<\operatorname{dir}(\tau)$ (componentwise partial order), then $\sigma \in \mathcal{Q}$.
2. If $\sigma \in \mathcal{Q}$, and $\operatorname{dir}(\sigma)=\operatorname{dir}(\tau)$, then $\tau \in \mathcal{Q}$.

Shifted cubical complexes

Motivated by shifted simplicial complexes.
Given $\sigma \in Q_{n}=\{0,1, *\}^{n}$, let $\operatorname{dir}(\sigma)=\left\{i: \sigma_{i}=*\right\}$
A cubical complex $\mathcal{Q} \subseteq\{0,1, *\}^{n}$ on n directions is shifted if:

1. If $\tau \in \mathcal{Q}$ and $\operatorname{dir}(\sigma)<\operatorname{dir}(\tau)$ (componentwise partial order), then $\sigma \in \mathcal{Q}$.
2. If $\sigma \in \mathcal{Q}$, and $\operatorname{dir}(\sigma)=\operatorname{dir}(\tau)$, then $\tau \in \mathcal{Q}$.
3. If $|\operatorname{dir}(\sigma)|=1$, then $\sigma \in \mathcal{Q}$.

Shifted cubical complexes

Motivated by shifted simplicial complexes.
Given $\sigma \in Q_{n}=\{0,1, *\}^{n}$, let $\operatorname{dir}(\sigma)=\left\{i: \sigma_{i}=*\right\}$
A cubical complex $\mathcal{Q} \subseteq\{0,1, *\}^{n}$ on n directions is shifted if:

1. If $\tau \in \mathcal{Q}$ and $\operatorname{dir}(\sigma)<\operatorname{dir}(\tau)$ (componentwise partial order), then $\sigma \in \mathcal{Q}$.
2. If $\sigma \in \mathcal{Q}$, and $\operatorname{dir}(\sigma)=\operatorname{dir}(\tau)$, then $\tau \in \mathcal{Q}$.
3. If $|\operatorname{dir}(\sigma)|=1$, then $\sigma \in \mathcal{Q}$.

Example

***00	***01	***10	*11
**0*0	**0*1	**1*0	${ }^{*}{ }^{1}{ }^{*} 1$
**00*	**01*	**10*	** $11 *$
${ }^{*}{ }^{* *} 0$	${ }^{*}{ }^{*}{ }^{*} 1$	${ }^{*} 1^{* *} 0$	${ }^{*}{ }^{* *}{ }_{1}$
*0*0*	${ }^{*}{ }^{*}{ }^{*}{ }^{*}$	*1*0*	${ }^{1}{ }^{*} 1^{*}$
$0^{* * *} 0$	$0^{* * *} 1$	$1^{* * *} 0$	$1^{* * *} 1$
0**0*	$0^{* *} 1^{*}$	$1^{* *}{ }^{*}$	$1^{* *} 1^{*}$

Near-Prisms

Definitions $\operatorname{del}_{\mathcal{Q}}[i]:=\left\{\sigma-\sigma_{i}: \sigma \in \mathcal{Q}, \sigma_{i} \neq *\right\}$

- link $_{\mathcal{Q}}[i]:=\left\{\sigma-\sigma_{i}: \sigma \in \mathcal{Q}, \sigma_{i}=*\right\}$
- \mathcal{Q} is a near-prism (in direction i) if
- the boundary of del $[i]$ is contained in link[$i]$.
- $0^{i} \operatorname{del}[i] \cup 1^{i} d e l[i] \subseteq \mathcal{Q}$

Example Biprism is union of:

- prism over two open square (all faces using direction 1)
- four additional faces at ends (all faces not using direction 1)
Theorem (easy): A cubical complex is shifted iff it is a near-prism in direction 1, and its del[1] and link[1] are also shifted.

Laplacians

Theorem If \mathcal{Q} is a near-prism in direction 1 , then its (top-dimensional) Laplacian non-0 eigenvalues s are given by

$$
s(\mathcal{Q})=s(\operatorname{del}[1]) \cup\left(2^{\mid \operatorname{link[1]|}}+(s(\operatorname{del}[1]) \cup s(\operatorname{link}[1]))\right) .
$$

Laplacians

Theorem If \mathcal{Q} is a near-prism in direction 1 , then its (top-dimensional) Laplacian non-0 eigenvalues s are given by

$$
s(\mathcal{Q})=s(\operatorname{del}[1]) \cup\left(2^{\mid \operatorname{link[1]|}}+(s(\operatorname{del}[1]) \cup s(\operatorname{link}[1]))\right) .
$$

Example Biprism. del[1] is $\{* 0 *, * * 0\}$, eigenvalues 53 link[1] is boundary of del[1], eigenvalues 53321

$$
\begin{aligned}
s & =53 \cup\left(2^{7}+(53 \cup 53321)\right) \\
& =53 \cup\left(2^{7}+5533321\right)=53 \cup 7755543=775555433
\end{aligned}
$$

Laplacians

Theorem If \mathcal{Q} is a near-prism in direction 1 , then its (top-dimensional) Laplacian non-0 eigenvalues s are given by

$$
s(\mathcal{Q})=s(\operatorname{del}[1]) \cup\left(2^{|\operatorname{link}[1]|}+(s(\operatorname{del}[1]) \cup s(\operatorname{link}[1]))\right) .
$$

Example Biprism. del[1] is $\{* 0 *, * * 0\}$, eigenvalues 53 link[1] is boundary of del[1], eigenvalues 53321

$$
\begin{aligned}
s & =53 \cup\left(2^{7}+(53 \cup 53321)\right) \\
& =53 \cup\left(2^{7}+5533321\right)=53 \cup 7755543=775555433
\end{aligned}
$$

Corollary Shifted cubical complexes are Laplacian integral.

Open Questions

- Shifted simplicial complexes have a nice formula for the Laplacian eigenvalues (transpose of degree sequence). Is there a formula for shifted cubical complexes?

Open Questions

- Shifted simplicial complexes have a nice formula for the Laplacian eigenvalues (transpose of degree sequence). Is there a formula for shifted cubical complexes?
- The homology of shifted simplicial complexes (number of 0 eigenvalues) is easy to describe combinatorially. Can we do the same for shifted cubical complexes?

Open Questions

- Shifted simplicial complexes have a nice formula for the Laplacian eigenvalues (transpose of degree sequence). Is there a formula for shifted cubical complexes?
- The homology of shifted simplicial complexes (number of 0 eigenvalues) is easy to describe combinatorially. Can we do the same for shifted cubical complexes?
- Shifted simplicial complexes are extremal in several ways (including f-vectors, algebraic shifting). Are shifted cubical complexes extremal in any way?

