The Critical group of a simplicial complex

Art Duval ${ }^{1} \quad$ Caroline Klivans ${ }^{2}$ Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ University of Chicago
${ }^{3}$ University of Kansas
CombinaTexas
Texas State University
April 24, 2010

Counting spanning trees of K_{n}

Theorem (Cayley)
K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Counting spanning trees of arbitrary graph G

Matrix-Tree Thm [Kirchhoff] G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees.

Counting spanning trees of arbitrary graph G

Matrix-Tree Thm [Kirchhoff] G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees.
Definition The
Laplacian matrix of G, denoted by $L(G)$.

Counting spanning trees of arbitrary graph G

Matrix-Tree Thm [Kirchhoff] G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees.
Definition The Laplacian matrix of G, denoted by $L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Counting spanning trees of arbitrary graph G

Matrix-Tree Thm [Kirchhoff] G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees.
Definition The Laplacian matrix of G, denoted by $L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

Counting spanning trees of arbitrary graph G

Matrix-Tree Thm [Kirchhoff] G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees.
Definition The reduced Laplacian matrix of G, denoted by $L_{r}(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

"Reduced": remove rows/columns corresponding to any one vertex

Example

$\partial=$| | 12 | 13 | 14 | 23 | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | 0 | 0 |
| 2 | 1 | 0 | 0 | -1 | -1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 0 | 1 | 0 | 1 |

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
$$

Example

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
$$

Example

$$
\begin{aligned}
& L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right) \\
& L_{r}=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& 3 \\
& 4=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right) \\
& L_{r}=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right)
\end{aligned}
$$

det $L_{r}=8$, and there are 8 spanning trees of this graph

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J \\
L_{r}\left(K_{n}\right) & =n l-J
\end{aligned}
$$

$$
\begin{array}{r}
(n \times n) ; \\
(n-1 \times n-1)
\end{array}
$$

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J & (n \times n) ; \\
L_{r}\left(K_{n}\right) & =n l-J & (n-1 \times n-1)
\end{aligned}
$$

Eigenvalues of L_{r} are:

$$
\begin{aligned}
n-(n-1) & (\text { multiplicity } 1) \\
n-0 & (\text { multiplicity }(n-1)-1)
\end{aligned}
$$

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J & (n \times n) ; \\
L_{r}\left(K_{n}\right) & =n l-J & (n-1 \times n-1)
\end{aligned}
$$

Eigenvalues of L_{r} are:

$$
\begin{aligned}
n-(n-1) & (\text { multiplicity } 1) \\
n-0 & (\text { multiplicity }(n-1)-1)
\end{aligned}
$$

$$
\operatorname{det} L_{r}=\prod \text { eigenvalues }
$$

$$
=(n-(n-1))(n-0)^{(n-1)-1}
$$

$$
=n^{n-2}
$$

Complete skeleta of simplicial complexes

Simplicial complex $\Delta \subseteq 2^{V}$;

$$
F \subseteq G \in \Delta \Rightarrow F \in \Delta .
$$

Complete skeleta of simplicial complexes

Simplicial complex $\Delta \subseteq 2^{V}$;

$$
F \subseteq G \in \Delta \Rightarrow F \in \Delta
$$

Complete skeleton The k-dimensional complete complex on n vertices, i.e.,

$$
K_{n}^{k}=\{F \subseteq V:|F| \leq k+1\}
$$

$$
\left(\text { so } K_{n}=K_{n}^{1}\right) .
$$

Simplicial spanning trees of K_{n}^{k} [Kalai, '83]

$\Upsilon \subseteq K_{n}^{k}$ is a simplicial spanning tree of K_{n}^{k} when:
0. $\Upsilon_{(k-1)}=K_{n}^{k-1}$ ("spanning");

1. $\tilde{H}_{k-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{k}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $|\Upsilon|=\binom{n-1}{k}($ "count" $)$.

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $k=1$, coincides with usual definition.

Counting simplicial spanning trees of K_{n}^{k}

Conjecture [Bolker '76]

$$
\sum_{\Upsilon \in \mathscr{T}\left(K_{n}^{k}\right)}=n^{\binom{n-2}{k}}
$$

Counting simplicial spanning trees of K_{n}^{k}

Theorem [Kalai '83]

$$
\sum_{\Upsilon \in \mathscr{T}\left(K_{n}^{k}\right)}\left|\tilde{H}_{k-1}(\Upsilon)\right|^{2}=n^{\binom{n-2}{k}}
$$

Counting simplicial spanning trees of K_{n}^{k}

Theorem [Kalai '83]

$$
\sum_{\Upsilon \in \mathscr{T}\left(K_{n}^{k}\right)}\left|\tilde{H}_{k-1}(\Upsilon)\right|^{2}=n^{\binom{n-2}{k}}
$$

Proof uses determinant of reduced Laplacian of K_{n}^{k}. "Reduced" now means pick one vertex, and then remove rows/columns corresponding to all ($k-1$)-dimensional faces containing that vertex.
$L=\partial \partial^{T}$
$\partial: \Delta_{k} \rightarrow \Delta_{k-1}$ boundary
$\partial^{T}: \Delta_{k-1} \rightarrow \Delta_{k}$ coboundary

Example $n=4, k=2$

Simplicial spanning trees of arbitrary simplicial complexes

Let Δ be a d-dimensional simplicial complex.
$\Upsilon \subseteq \Delta$ is a simplicial spanning tree of Δ when:
0. $\Upsilon_{(d-1)}=\Delta_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(\Upsilon)=f_{d}(\Delta)-\tilde{\beta}_{d}(\Delta)+\tilde{\beta}_{d-1}(\Delta)($ "count" $)$.

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $d=1$, coincides with usual definition.

Example

Bipyramid with equator, $\langle 123,124,125,134,135,234,235\rangle$

Let's figure out all its simplicial spanning trees.

Acyclic in Positive Codimension (APC)

- Denote by $\mathscr{T}(\Delta)$ the set of simplicial spanning trees of Δ.
- Proposition $\mathscr{T}(\Delta) \neq \emptyset$ iff Δ is APC, i.e. (equivalently)
- homology type of wedge of spheres;
- $\tilde{H}_{j}(\Delta ; \mathbb{Z})$ is finite for all $j<\operatorname{dim} \Delta$.
- Many interesting complexes are APC.

Simplicial Matrix-Tree Theorem

- Δ a d-dimensional APC complex
- $\Gamma \in \mathscr{T}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in 「
- reduced (up-down) $(d-1)$-dimensional Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial^{*}{ }_{\Gamma}$

Theorem [DKM '09]

$$
h_{d}=\sum_{\Upsilon \in \mathscr{T}(\Delta)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} L_{\Gamma} .
$$

Note: The $\left|\tilde{H}_{d-2}\right|$ terms are often trivial.

Bipyramid again

$\Gamma=12,13,14,15$ spanning tree of 1 -skeleton

Bipyramid again

$\Gamma=12,13,14,15$ spanning tree of 1 -skeleton

$L_{\Gamma}=$| | 23 | 24 | 25 | 34 | 35 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 23 | 3 | -1 | -1 | 1 | 1 |
| 24 | -1 | 2 | 0 | -1 | 0 |
| 25 | -1 | 0 | 2 | 0 | -1 |
| 34 | 1 | -1 | 0 | 2 | 0 |
| 35 | 1 | 0 | -1 | 0 | 2 |

Bipyramid again

$\Gamma=12,13,14,15$ spanning tree of 1 -skeleton

$L_{\Gamma}=$| | 23 | 24 | 25 | 34 | 35 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 23 | 3 | -1 | -1 | 1 | 1 |
| 24 | -1 | 2 | 0 | -1 | 0 |
| 25 | -1 | 0 | 2 | 0 | -1 |
| 34 | 1 | -1 | 0 | 2 | 0 |
| 35 | 1 | 0 | -1 | 0 | 2 |

$\operatorname{det} L_{\Gamma}=15$.

Sandpiles and Chip-Firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Sandpiles and Chip-Firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
Abstraction Graph G with vertices v_{1}, \ldots, v_{n}. Degree of v_{i} is d_{i}. Place $c_{i} \in \mathbb{Z}$ chips (grains of sand) on v_{i}.

Sandpiles and Chip-Firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
Abstraction Graph G with vertices v_{1}, \ldots, v_{n}. Degree of v_{i} is d_{i}. Place $c_{i} \in \mathbb{Z}$ chips (grains of sand) on v_{i}.
Toppling If $c_{i} \geq d_{i}$, then v_{i} may fire by sending one chip to each of its neighbors.

Sandpiles and Chip-Firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
Abstraction Graph G with vertices v_{1}, \ldots, v_{n}. Degree of v_{i} is d_{i}. Place $c_{i} \in \mathbb{Z}$ chips (grains of sand) on v_{i}.
Toppling If $c_{i} \geq d_{i}$, then v_{i} may fire by sending one chip to each of its neighbors.
Example

Sandpiles and Chip-Firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
Abstraction Graph G with vertices v_{1}, \ldots, v_{n}. Degree of v_{i} is d_{i}. Place $c_{i} \in \mathbb{Z}$ chips (grains of sand) on v_{i}.
Toppling If $c_{i} \geq d_{i}$, then v_{i} may fire by sending one chip to each of its neighbors.
Example

Laplacian Firing v_{i} is subtracting $L v_{i}$ from $\left(c_{1}, \ldots, c_{n}\right)$.

Source vertex

- To keep things going, pick one vertex v_{r} to be a source vertex. We can always add chips to v_{r}.

Source vertex

- To keep things going, pick one vertex v_{r} to be a source vertex. We can always add chips to v_{r}.
- Put another way: c_{r} can be any value. One simple way to do this is to insist that

$$
\sum_{i} c_{i}=0
$$

Source vertex

- To keep things going, pick one vertex v_{r} to be a source vertex. We can always add chips to v_{r}.
- Put another way: c_{r} can be any value. One simple way to do this is to insist that

$$
\sum_{i} c_{i}=0
$$

- (We might think $c_{r} \leq 0$, and $c_{i} \geq 0$ when $i \neq r$, or that v_{r} can fire even when $c_{r} \leq d_{r}$).

Source vertex

- To keep things going, pick one vertex v_{r} to be a source vertex. We can always add chips to v_{r}.
- Put another way: c_{r} can be any value. One simple way to do this is to insist that

$$
\sum_{i} c_{i}=0
$$

- (We might think $c_{r} \leq 0$, and $c_{i} \geq 0$ when $i \neq r$, or that v_{r} can fire even when $c_{r} \leq d_{r}$).
- In other words,

$$
c \in \operatorname{ker} \partial \subseteq \mathbb{Z}^{n}
$$

Critical group

- Consider two configurations to be equivalent when you can get from one to the other by chip-firing.

Critical group

- Consider two configurations to be equivalent when you can get from one to the other by chip-firing.
- This means adding/subtracting integer multiples of $L v_{i}$.

Critical group

- Consider two configurations to be equivalent when you can get from one to the other by chip-firing.
- This means adding/subtracting integer multiples of $L v_{i}$.
- In other words, instead of ker ∂, we look at

$$
K(G):=\operatorname{ker} \partial / \operatorname{im} L
$$

the critical group. (It is a graph invariant.)

Spanning trees

Theorem (Biggs '99)

$$
K:=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{n-1} / L_{r} .
$$

Spanning trees

Theorem (Biggs '99)

$$
K:=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{n-1} / L_{r} .
$$

Fact (Amazing)
If M is a full rank r-dimensional matrix:

$$
\left|\left(\mathbb{Z}^{r}\right) /(\operatorname{im} M)\right|= \pm \operatorname{det} M
$$

Spanning trees

Theorem (Biggs '99)

$$
K:=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{n-1} / L_{r} .
$$

Fact (Amazing)
If M is a full rank r-dimensional matrix:

$$
\left|\left(\mathbb{Z}^{r}\right) /(\operatorname{im} M)\right|= \pm \operatorname{det} M
$$

Corollary
$|K(G)|$ is the number of spanning trees of G.
(Many other proofs.)

Generalize to simplicial complexes

Let Δ be a d-dimensional simplicial complex.

$$
\begin{gathered}
C_{d}(\Delta ; \mathbb{Z}) \stackrel{\partial_{d}^{*}}{\leftrightarrows} C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta ; \mathbb{Z}) \rightarrow \cdots \\
C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta ; \mathbb{Z}) \rightarrow \cdots
\end{gathered}
$$

Generalize to simplicial complexes

Let Δ be a d-dimensional simplicial complex.

$$
\begin{gathered}
C_{d}(\Delta ; \mathbb{Z}) \stackrel{\partial_{d}^{*}}{\stackrel{\text { dr }}{\leftrightarrows}} C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta ; \mathbb{Z}) \rightarrow \cdots \\
C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta ; \mathbb{Z}) \rightarrow \cdots
\end{gathered}
$$

Define

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1}
$$

where $L_{d-1}=\partial_{d} \partial_{d}^{*}$ is the $(d-1)$-dimensional up-down Laplacian.

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

- Put integers on $(d-1)$-faces of Δ. Orient faces arbitrarily. $d=2$: flow; $d=3$: circulation; etc.

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

- Put integers on $(d-1)$-faces of Δ. Orient faces arbitrarily. $d=2$: flow; $d=3$: circulation; etc.
- $d=2$: conservative flow (material does not accumulate or deplete at any vertex); $d=3$: face circulation at each edge adds to zero

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

- Put integers on ($d-1$)-faces of Δ. Orient faces arbitrarily. $d=2$: flow; $d=3$: circulation; etc.
- $d=2$: conservative flow (material does not accumulate or deplete at any vertex); $d=3$: face circulation at each edge adds to zero
- Toppling/firing moves the flow/circulation/whatever to "neighboring" $(d-1)$-faces, across d-faces.

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)
Simplicial complexes

- To count spanning trees, remove a ($d-1$)-dimensional spanning tree from up-down Laplacian.

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)
Simplicial complexes

- To count spanning trees, remove a ($d-1$)-dimensional spanning tree from up-down Laplacian.
- To compute critical group, remove a ($d-1$)-dimensional spanning tree from up-down Laplacian.

Spanning trees

Theorem (DKM)

$$
K(\Delta):=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{r} / L_{\Gamma}
$$

where Γ is a torsion-free ($d-1$)-dimensional spanning tree and $r=\operatorname{dim} L_{r}$.

Spanning trees

Theorem (DKM)

$$
K(\Delta):=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{r} / L_{\Gamma}
$$

where Γ is a torsion-free ($d-1$)-dimensional spanning tree and $r=\operatorname{dim} L_{r}$.

Corollary

$|K(\Delta)|$ is the torsion-weighted number of d-dimensional spanning trees of Δ.

