The Critical group of a simplicial complex

Art Duval¹ Caroline Klivans² Jeremy Martin³

¹University of Texas at El Paso

²University of Chicago

³University of Kansas

CombinaTexas Texas State University April 24, 2010

(4月) イヨト イヨト

Counting spanning trees of K_n

Theorem (Cayley) K_n has n^{n-2} spanning trees.

- ${\mathcal T}$ spanning tree: set of edges containing all vertices and
 - 1. connected $(\tilde{H}_0(T) = 0)$
 - 2. no cycles $(\tilde{H}_1(T) = 0)$
 - 3. |T| = n 1

Note: Any two conditions imply the third.

(人間) ト く ヨ ト く ヨ ト

Matrix-Tree Thm [Kirchhoff] G has $|\det L_r(G)|$ spanning trees.

Matrix-Tree Thm [Kirchhoff] G has $|\det L_r(G)|$ spanning trees. **Definition** The Laplacian matrix of G, denoted by L(G).

- 4 同 6 4 日 6 4 日 6

-

Matrix-Tree Thm [Kirchhoff] G has $|\det L_r(G)|$ spanning trees. Definition The Laplacian matrix of G, denoted by L (G). Defn 1: L(G) = D(G) - A(G) $D(G) = \operatorname{diag}(\operatorname{deg} v_1, \dots, \operatorname{deg} v_n)$ $A(G) = \operatorname{adjacency matrix}$

Matrix-Tree Thm [Kirchhoff] G has $|\det L_r(G)|$ spanning trees. Definition The Laplacian matrix of G, denoted by L (G). Defn 1: L(G) = D(G) - A(G) $D(G) = \operatorname{diag}(\operatorname{deg} v_1, \dots, \operatorname{deg} v_n)$ $A(G) = \operatorname{adjacency matrix}$ Defn 2: $L(G) = \partial(G)\partial(G)^T$ $\partial(G) = \operatorname{incidence matrix}$ (boundary matrix)

Matrix-Tree Thm [Kirchhoff] G has $|\det L_r(G)|$ spanning trees. Definition The reduced Laplacian matrix of G, denoted by $L_r(G)$. Defn 1: L(G) = D(G) - A(G) $D(G) = \operatorname{diag}(\operatorname{deg} v_1, \dots, \operatorname{deg} v_n)$ $A(G) = \operatorname{adjacency matrix}$ Defn 2: $L(G) = \partial(G)\partial(G)^T$ $\partial(G) = \operatorname{incidence matrix} (\operatorname{boundary matrix})$

"Reduced": remove rows/columns corresponding to any one vertex

omplete graph rbitrary graphs

Example

・ロン ・部 と ・ ヨ と ・ ヨ と …

omplete graph rbitrary graphs

Example

・ロン ・部 と ・ ヨ と ・ ヨ と …

omplete graph rbitrary graphs

Example

→ □ → → 三 → → 三 →

omplete graph rbitrary graphs

Example

det $L_r = 8$, and there are 8 spanning trees of this graph

伺 と く ヨ と く ヨ と

omplete graph rbitrary graphs

Example: K_n

$$L(K_n) = nI - J \qquad (n \times n);$$

$$L_r(K_n) = nI - J \qquad (n-1 \times n-1)$$

Example: K_n

$$L(K_n) = nI - J \qquad (n \times n);$$

$$L_r(K_n) = nI - J \qquad (n-1 \times n-1)$$

Eigenvalues of L_r are:

$$n - (n - 1)$$
 (multiplicity 1),
 $n - 0$ (multiplicity $(n - 1) - 1$)

・ロト ・回ト ・ヨト ・ヨト

Example: K_n

$$L(K_n) = nI - J \qquad (n \times n);$$

$$L_r(K_n) = nI - J \qquad (n-1 \times n-1)$$

Eigenvalues of L_r are:

$$n - (n - 1)$$
 (multiplicity 1),
 $n - 0$ (multiplicity $(n - 1) - 1$)

det
$$L_r = \prod$$
 eigenvalues
= $(n - (n - 1))(n - 0)^{(n-1)-1}$
= n^{n-2}

・ロト ・回ト ・ヨト ・ヨト

Complete skeleta of simplicial complexes

Simplicial complex $\Delta \subseteq 2^V$; $F \subseteq G \in \Delta \Rightarrow F \in \Delta$.

- 4 同 6 4 日 6 4 日 6

Complete skeleta of simplicial complexes

Simplicial complex
$$\Delta \subseteq 2^V$$
;
 $F \subseteq G \in \Delta \Rightarrow F \in \Delta$.

Complete skeleton The *k*-dimensional complete complex on *n* vertices, *i.e.*,

$$\mathcal{K}_n^k = \{F \subseteq V \colon |F| \leq k+1\}$$
 (so $\mathcal{K}_n = \mathcal{K}_n^1$).

Simplicial spanning trees of K_n^k [Kalai, '83]

 $\Upsilon \subseteq K_n^k$ is a simplicial spanning tree of K_n^k when:

0.
$$\Upsilon_{(k-1)} = K_n^{k-1}$$
 ("spanning");

1. $\tilde{H}_{k-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");

2.
$$\tilde{H}_k(\Upsilon; \mathbb{Z}) = 0$$
 ("acyclic");

3.
$$|\Upsilon| = \binom{n-1}{k}$$
 ("count").

- If 0. holds, then any two of 1., 2., 3. together imply the third condition.
- When k = 1, coincides with usual definition.

イロト イポト イヨト イヨト

Counting simplicial spanning trees of K_n^k

Conjecture [Bolker '76]

 $\sum_{\Upsilon\in\mathscr{T}(K_n^k)}$

 $= n \binom{n-2}{k}$

Counting simplicial spanning trees of K_n^k

Theorem [Kalai '83]

$$\sum_{\Upsilon\in\mathscr{T}(K_n^k)}|\tilde{H}_{k-1}(\Upsilon)|^2=n^{\binom{n-2}{k}}$$

イロン 不同 とくほう イロン

Counting simplicial spanning trees of K_n^k

Theorem [Kalai '83]

$$\sum_{\Upsilon \in \mathscr{T}(K_n^k)} |\tilde{H}_{k-1}(\Upsilon)|^2 = n^{\binom{n-2}{k}}$$

Proof uses determinant of reduced Laplacian of K_n^k . "Reduced" now means pick one vertex, and then remove rows/columns corresponding to all (k - 1)-dimensional faces containing that vertex.

$$L = \partial \partial^{T}$$

$$\partial : \Delta_{k} \to \Delta_{k-1} \text{ boundary}$$

$$\partial^{T} : \Delta_{k-1} \to \Delta_{k} \text{ coboundary}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example n = 4, k = 2

・ロン ・部 と ・ ヨン ・ ヨン …

Simplicial spanning trees of arbitrary simplicial complexes

Let Δ be a *d*-dimensional simplicial complex. $\Upsilon \subseteq \Delta$ is a **simplicial spanning tree** of Δ when:

0.
$$\Upsilon_{(d-1)} = \Delta_{(d-1)}$$
 ("spanning");

1.
$$\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$$
 is a finite group ("connected");

2.
$$\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$$
 ("acyclic");

3.
$$f_d(\Upsilon) = f_d(\Delta) - \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta)$$
 ("count").

- If 0. holds, then any two of 1., 2., 3. together imply the third condition.
- When d = 1, coincides with usual definition.

(日) (同) (三) (三)

Complete skeleton Simplicial spanning trees

Example

Bipyramid with equator, $\langle 123, 124, 125, 134, 135, 234, 235\rangle$

Let's figure out all its simplicial spanning trees.

- 4 同 6 4 日 6 4 日 6

Acyclic in Positive Codimension (APC)

- Denote by *T*(Δ) the set of simplicial spanning trees of Δ.
- ▶ **Proposition** $\mathscr{T}(\Delta) \neq \emptyset$ iff Δ is **APC**, *i.e.* (equivalently)
 - homology type of wedge of spheres;
 - $\tilde{H}_j(\Delta; \mathbb{Z})$ is finite for all $j < \dim \Delta$.
- Many interesting complexes are APC.

(人間) ト く ヨ ト く ヨ ト

Simplicial Matrix-Tree Theorem

• Δ a *d*-dimensional APC complex

- $\partial_{\Gamma} = \text{restriction of } \partial_d$ to faces not in Γ
- ▶ reduced (up-down) (d-1)-dimensional Laplacian $L_{\Gamma} = \partial_{\Gamma} \partial^*_{\Gamma}$

Theorem [DKM '09]

$$h_d = \sum_{\Upsilon \in \mathscr{T}(\Delta)} |\tilde{H}_{d-1}(\Upsilon)|^2 = \frac{|\tilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{|\tilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} \det L_{\Gamma}.$$

Note: The $|\tilde{H}_{d-2}|$ terms are often trivial.

(4月) (4日) (4日)

Bipyramid again

$\ensuremath{\mathsf{\Gamma}}=12,13,14,15$ spanning tree of 1-skeleton

Bipyramid again

$\Gamma = 12, 13, 14, 15$ spanning tree of 1-skeleton

		23	24	25	34	35
$L_{\Gamma} =$	23	3	-1	-1	1	1
	24	-1	2	0	-1	0
	25	-1	0	-1 0 2 0 -1	0	-1
	34	1	-1	0	2	0
	35	1	0	-1	0	2

Bipyramid again

$\Gamma = 12, 13, 14, 15$ spanning tree of 1-skeleton

		23	24	25	34	35
$L_{\Gamma} =$	23	3	-1 2 0 -1 0	-1	1	1
	24	-1	2	0	-1	0
	25	-1	0	2	0	-1
	34	1	-1	0	2	0
	35	1	0	-1	0	2

det $L_{\Gamma} = 15$.

イロト イポト イヨト イヨト

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

-

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .

・ 同 ト ・ ヨ ト ・ ヨ ト

- Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
- Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .
 - Toppling If $c_i \ge d_i$, then v_i may fire by sending one chip to each of its neighbors.

- 4 同 6 4 日 6 4 日 6

- Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
- Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .
 - Toppling If $c_i \ge d_i$, then v_i may fire by sending one chip to each of its neighbors.

Example

- 4 同 ト 4 ヨ ト 4 ヨ

- Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
- Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .
 - Toppling If $c_i \ge d_i$, then v_i may fire by sending one chip to each of its neighbors.

Example

(日) (同) (三) (三)

Laplacian Firing v_i is subtracting Lv_i from (c_1, \ldots, c_n) .

Graphs Simplicial complexes

Source vertex

To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.

э

(日) (同) (三) (三)

Graphs Simplicial complexes

Source vertex

- To keep things going, pick one vertex v_r to be a source vertex.
 We can always add chips to v_r.
- Put another way: c_r can be any value. One simple way to do this is to insist that

$$\sum_i c_i = 0.$$

- 4 同 6 4 日 6 4 日 6

Source vertex

- To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.
- Put another way: c_r can be any value. One simple way to do this is to insist that

$$\sum_i c_i = 0.$$

• (We might think $c_r \leq 0$, and $c_i \geq 0$ when $i \neq r$, or that v_r can fire even when $c_r \leq d_r$).

- 4 同 6 4 日 6 4 日 6

Graphs Simplicial complexes

Source vertex

- To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.
- Put another way: c_r can be any value. One simple way to do this is to insist that

$$\sum_i c_i = 0.$$

- ▶ (We might think $c_r \leq 0$, and $c_i \geq 0$ when $i \neq r$, or that v_r can fire even when $c_r \leq d_r$).
- In other words,

$$c \in \ker \partial \subseteq \mathbb{Z}^n$$

- 4 同 6 4 日 6 4 日 6

Critical group

 Consider two configurations to be equivalent when you can get from one to the other by chip-firing.

э

Critical group

- Consider two configurations to be equivalent when you can get from one to the other by chip-firing.
- This means adding/subtracting integer multiples of Lv_i.

Critical group

- Consider two configurations to be equivalent when you can get from one to the other by chip-firing.
- This means adding/subtracting integer multiples of Lv_i.
- In other words, instead of ker ∂ , we look at

 $K(G) := \ker \partial / \operatorname{im} L$

the critical group. (It is a graph invariant.)

Theorem (Biggs '99)

$${\mathcal K}:=(\ker\partial)/(\operatorname{im} L)\cong {\mathbb Z}^{n-1}/L_r.$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Theorem (Biggs '99)

$$K := (\ker \partial)/(\operatorname{im} L) \cong \mathbb{Z}^{n-1}/L_r.$$

Fact (Amazing) If M is a full rank r-dimensional matrix:

$$|(\mathbb{Z}^r)/(\operatorname{im} M)| = \pm \det M$$

э

(日) (同) (日) (日) (日)

Theorem (Biggs '99)

$$K := (\ker \partial)/(\operatorname{im} L) \cong \mathbb{Z}^{n-1}/L_r.$$

Fact (Amazing) If M is a full rank r-dimensional matrix:

 $|(\mathbb{Z}^r)/(\operatorname{im} M)| = \pm \det M$

Corollary |K(G)| is the number of spanning trees of *G*. (Many other proofs.)

-

Generalize to simplicial complexes

Let Δ be a *d*-dimensional simplicial complex.

$$C_{d}(\Delta;\mathbb{Z}) \stackrel{\partial_{d}^{*}}{\underset{\partial_{d}}{\hookrightarrow}} C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$
$$C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Generalize to simplicial complexes

Let Δ be a *d*-dimensional simplicial complex.

$$C_{d}(\Delta; \mathbb{Z}) \xrightarrow[\partial_{d}]{\mathcal{O}_{d}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow[\partial_{d-1}]{\mathcal{O}_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$
$$C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow[d_{d-1}]{\mathcal{O}_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$
Define

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1}$$

where $L_{d-1} = \partial_d \partial_d^*$ is the (d-1)-dimensional up-down Laplacian.

イロト イポト イヨト イヨト

What does it look like?

$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$

Put integers on (d – 1)-faces of Δ. Orient faces arbitrarily. d = 2: flow; d = 3: circulation; etc.

- 4 同 6 4 日 6 4 日 6

-

What does it look like?

$$\mathcal{K}(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

- Put integers on (d 1)-faces of Δ. Orient faces arbitrarily. d = 2: flow; d = 3: circulation; etc.
- ► d = 2: conservative flow (material does not accumulate or deplete at any vertex); d = 3: face circulation at each edge adds to zero

What does it look like?

$$\mathcal{K}(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

- Put integers on (d 1)-faces of Δ. Orient faces arbitrarily. d = 2: flow; d = 3: circulation; etc.
- ► d = 2: conservative flow (material does not accumulate or deplete at any vertex); d = 3: face circulation at each edge adds to zero
- ► Toppling/firing moves the flow/circulation/whatever to "neighboring" (d − 1)-faces, across d-faces.

4 B K 4 B K

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.) Simplicial complexes

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

 To count spanning trees, remove a (d - 1)-dimensional spanning tree from up-down Laplacian.

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

- To count spanning trees, remove a (d-1)-dimensional spanning tree from up-down Laplacian.
- ► To compute critical group, remove a (d − 1)-dimensional spanning tree from up-down Laplacian.

Theorem (DKM)

$$\mathcal{K}(\Delta) := (\ker \partial) / (\operatorname{im} L) \cong \mathbb{Z}^r / L_{\Gamma}$$

where Γ is a torsion-free (d-1)-dimensional spanning tree and $r=\dim L_{\Gamma}.$

э

- 4 同 6 4 日 6 4 日 6

Graphs Simplicial complexes

Spanning trees

Theorem (DKM)

$\mathcal{K}(\Delta) := (\ker \partial)/(\operatorname{im} L) \cong \mathbb{Z}^r/L_{\Gamma}$

where Γ is a torsion-free (d-1)-dimensional spanning tree and $r = \dim L_{\Gamma}$.

Corollary

 $|K(\Delta)|$ is the torsion-weighted number of d-dimensional spanning trees of Δ .