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Counting spanning trees of Kn

Theorem (Cayley)

Kn has nn−2 spanning trees.

T spanning tree: set of edges containing all vertices and

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. |T | = n − 1

Note: Any two conditions imply the third.
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Counting spanning trees of arbitrary graph G

Matrix-Tree Thm [Kirchhoff] G has | det Lr (G )| spanning trees.

Definition The reduced Laplacian matrix of G , denoted by L

r

(G ).
Defn 1: L(G ) = D(G )− A(G )

D(G ) = diag(deg v1, . . . , deg vn)

A(G ) = adjacency matrix

Defn 2: L(G ) = ∂(G )∂(G )T

∂(G ) = incidence matrix (boundary matrix)

“Reduced”: remove rows/columns corresponding to any one vertex
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Example

r r
rr���

� 1

2

3

4 ∂ =

12 13 14 23 24

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2
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Lr =

 3 −1 −1
−1 2 0
−1 0 2


det Lr = 8, and there are 8 spanning trees of this graph
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Example: Kn

L(Kn) = nI − J (n × n);

Lr (Kn) = nI − J (n−1× n−1)

Eigenvalues of Lr are:

n − (n − 1) (multiplicity 1),

n − 0 (multiplicity (n − 1)− 1)

det Lr =
∏

eigenvalues

= (n − (n − 1))(n − 0)(n−1)−1

= nn−2
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Complete skeleta of simplicial complexes

Simplicial complex ∆ ⊆ 2V ;
F ⊆ G ∈ ∆⇒ F ∈ ∆.

Complete skeleton The k-dimensional complete complex on n
vertices, i.e.,

K k
n = {F ⊆ V : |F | ≤ k + 1}

(so Kn = K 1
n ).
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Simplicial spanning trees of K k
n [Kalai, ’83]

Υ ⊆ K k
n is a simplicial spanning tree of K k

n when:

0. Υ(k−1) = K k−1
n (“spanning”);

1. H̃k−1(Υ; Z) is a finite group (“connected”);

2. H̃k(Υ; Z) = 0 (“acyclic”);

3. |Υ| =
(n−1

k

)
(“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When k = 1, coincides with usual definition.
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Counting simplicial spanning trees of K k
n

Conjecture [Bolker ’76]∑
Υ∈T (K k

n )

|H̃k−1(Υ)|2

= n(n−2
k )

Proof uses determinant of reduced Laplacian of K k
n . “Reduced”

now means pick one vertex, and then remove rows/columns
corresponding to all (k − 1)-dimensional faces containing that
vertex.
L = ∂∂T

∂ : ∆k → ∆k−1 boundary
∂T : ∆k−1 → ∆k coboundary
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Example n = 4, k = 2

∂T =

12 13 14 23 24 34

123 -1 1 0 -1 0 0
124 -1 0 1 0 -1 0
134 0 -1 1 0 0 -1
234 0 0 0 -1 1 -1

L =


2 −1 −1 1 1 0
−1 2 −1 −1 0 1
−1 −1 2 0 −1 −1
1 −1 0 2 −1 1
1 0 −1 −1 2 −1
0 1 −1 1 −1 2
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Simplicial spanning trees of arbitrary simplicial complexes

Let ∆ be a d-dimensional simplicial complex.
Υ ⊆ ∆ is a simplicial spanning tree of ∆ when:

0. Υ(d−1) = ∆(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Example

Bipyramid with equator, 〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3

Let’s figure out all its simplicial spanning trees.
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Acyclic in Positive Codimension (APC)

I Denote by T (∆) the set of simplicial spanning trees of ∆.
I Proposition T (∆) 6= ∅ iff ∆ is APC, i.e. (equivalently)

I homology type of wedge of spheres;
I H̃j(∆; Z) is finite for all j < dim ∆.

I Many interesting complexes are APC.

Duval, Klivans, Martin The Critical group of a simplicial complex
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Simplicial Matrix-Tree Theorem

I ∆ a d-dimensional APC complex

I Γ ∈ T (∆(d−1))

I ∂ Γ = restriction of ∂d to faces not in Γ

I reduced (up-down) (d − 1)-dimensional Laplacian LΓ = ∂ Γ∂
∗

Γ

Theorem [DKM ’09]

hd =
∑

Υ∈T (∆)

|H̃d−1(Υ)|2 =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.

Note: The |H̃d−2| terms are often trivial.
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Bipyramid again

Γ = 12, 13, 14, 15 spanning tree of 1-skeleton

LΓ =

23 24 25 34 35

23 3 -1 -1 1 1
24 -1 2 0 -1 0
25 -1 0 2 0 -1
34 1 -1 0 2 0
35 1 0 -1 0 2

det LΓ = 15.
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Bipyramid again

Γ = 12, 13, 14, 15 spanning tree of 1-skeleton

LΓ =

23 24 25 34 35

23 3 -1 -1 1 1
24 -1 2 0 -1 0
25 -1 0 2 0 -1
34 1 -1 0 2 0
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det LΓ = 15.
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Sandpiles and Chip-Firing

Motivation Think of a sandpile, with grains of sand on vertices
of a graph. When the pile at one place is too large, it
topples, sending grains to all its neighbors.

Abstraction Graph G with vertices v1, . . . , vn. Degree of vi is di .
Place ci ∈ Z chips (grains of sand) on vi .

Toppling If ci ≥ di , then vi may fire by sending one chip to
each of its neighbors.

Example
3

@
@

@
@

@
@
@
@

@
@

@
@

@
@

@
@

1

4

3

3

2

5

2 0

4 6

1

2 3

3 2

Laplacian Firing vi is subtracting Lvi from (c1, . . . , cn).
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Source vertex

I To keep things going, pick one vertex vr to be a source vertex.
We can always add chips to vr .

I Put another way: cr can be any value. One simple way to do
this is to insist that ∑

i

ci = 0.

I (We might think cr ≤ 0, and ci ≥ 0 when i 6= r , or that vr

can fire even when cr ≤ dr ).

I In other words,

c ∈ ker ∂ ⊆ Zn
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Critical group

I Consider two configurations to be equivalent when you can
get from one to the other by chip-firing.

I This means adding/subtracting integer multiples of Lvi .

I In other words, instead of ker ∂, we look at

K (G ) := ker ∂/ im L

the critical group. (It is a graph invariant.)
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Spanning trees

Theorem (Biggs ’99)

K := (ker ∂)/(im L) ∼= Zn−1/Lr .

Fact (Amazing)

If M is a full rank r-dimensional matrix:

|(Zr )/(im M)| = ± det M

Corollary

|K (G )| is the number of spanning trees of G.

(Many other proofs.)
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Generalize to simplicial complexes

Let ∆ be a d-dimensional simplicial complex.

Cd(∆; Z)
∂∗d
�
∂d

Cd−1(∆; Z)
∂d−1−−−→ Cd−2(∆; Z)→ · · ·

Cd−1(∆; Z)
Ld−1−−−→ Cd−1(∆; Z)

∂d−1−−−→ Cd−2(∆; Z)→ · · ·

Define

K (∆) := ker ∂d−1/ im Ld−1

where Ld−1 = ∂d∂
∗
d is the (d − 1)-dimensional up-down Laplacian.
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What does it look like?

K (∆) := ker ∂d−1/ im Ld−1 ⊆ Zm

I Put integers on (d − 1)-faces of ∆. Orient faces arbitrarily.
d = 2: flow; d = 3: circulation; etc.

I d = 2: conservative flow (material does not accumulate or
deplete at any vertex); d = 3: face circulation at each edge
adds to zero

I Toppling/firing moves the flow/circulation/whatever to
“neighboring” (d − 1)-faces, across d-faces.

1

3

3

3

4

2 2

1 05
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How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group,
remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

I To count spanning trees, remove a
(d − 1)-dimensional spanning tree from up-down
Laplacian.

I To compute critical group, remove a
(d − 1)-dimensional spanning tree from up-down
Laplacian.
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Spanning trees

Theorem (DKM)

K (∆) := (ker ∂)/(im L) ∼= Zr/LΓ

where Γ is a torsion-free (d − 1)-dimensional spanning tree and
r = dim LΓ.

Corollary

|K (∆)| is the torsion-weighted number of d-dimensional spanning
trees of ∆.
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