Simplicial spanning trees

Art Duval¹ Caroline Klivans² Jeremy Martin³

¹University of Texas at El Paso

²University of Chicago

³University of Kansas

Discrete Mathematics & Representation Theory Seminar University of California, Davis May 23, 2008

・ 同 ト ・ ヨ ト ・ ヨ ト

Graphs Complete Simplicial complexes Other complexes Threshold

Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees. *T* spanning tree: set of edges containing all vertices and

- 1. connected $(\tilde{H}_0(T) = 0)$
- 2. no cycles $(\tilde{H}_1(T) = 0)$

3.
$$|T| = n - 1$$

Note: Any two conditions imply the third.

Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees. *T* spanning tree: set of edges containing all vertices and

- 1. connected $(\tilde{H}_0(T) = 0)$
- 2. no cycles $(\tilde{H}_1(T) = 0)$

3.
$$|T| = n - 1$$

Note: Any two conditions imply the third. Weighting

vertices? Silly $(n^{n-2}(x_1 \cdots x_n))$

Graphs Complete Simplicial complexes Arbitrary Other complexes Threshold

Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees. *T* spanning tree: set of edges containing all vertices and

- 1. connected $(\tilde{H}_0(T) = 0)$
- 2. no cycles $(\tilde{H}_1(T) = 0)$

3.
$$|T| = n - 1$$

Note: Any two conditions imply the third. Weighting

vertices? Silly $(n^{n-2}(x_1 \cdots x_n))$ edges? No nice structure (can't see n^{n-2})

Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees. *T* spanning tree: set of edges containing all vertices and

- 1. connected $(\tilde{H}_0(T) = 0)$
- 2. no cycles $(\tilde{H}_1(T) = 0)$

3.
$$|T| = n - 1$$

Note: Any two conditions imply the third. Weighting

vertices? Silly
$$(n^{n-2}(x_1 \cdots x_n))$$

edges? No nice structure (can't see n^{n-2})
both! wt $T = \prod_{e \in T} \text{wt } e = \prod_{e \in T} (\prod_{v \in e} x_v)$ Prüfer coding

(日) (同) (三) (三)

Arbitrary graphs Threshold graphs

Counting weighted spanning trees of K_n

Theorem [Cayley]: K_n has n^{n-2} spanning trees. *T* spanning tree: set of edges containing all vertices and

- 1. connected $(\tilde{H}_0(T) = 0)$
- 2. no cycles $(\tilde{H}_1(T) = 0)$

$$|T| = n - 1$$

V

Note: Any two conditions imply the third. Weighting

ertices? Silly
$$(n^{n-2}(x_1 \cdots x_n))$$

edges? No nice structure (can't see n^{n-2})
both! wt $T = \prod_{e \in T}$ wt $e = \prod_{e \in T} (\prod_{v \in e} x_v)$ Prüfer coding
 $\sum_{T \in ST(K_n)}$ wt $T = (x_1 \cdots x_n)(x_1 + \cdots + x_n)^{n-2}$

<mark>Complete graph</mark> Arbitrary graphs Threshold graphs

Example: K_4

• 4 trees like:
$$T = 2^{4}$$
 wt $T = (x_1 x_2 x_3 x_4) x_2^2$

Duval, Klivans, Martin Simplicial spanning trees

・ロト ・四ト ・ヨト ・ヨト

C<mark>omplete graph</mark> Arbitrary graphs Threshold graphs

Example: K_4

• 4 trees like:
$$T = 2$$

• 1 wt $T = (x_1 x_2 x_3 x_4) x_2^2$
• 12 trees like: $T = 2$
• 12 trees like: $T = 2$
• 12 trees like: $T = 2$

*ロト *部ト *注ト *注ト

Complete graph Arbitrary graphs Threshold graphs

Example: K_4

► 4 trees like:
$$T = 2$$

• 4 trees like: $T = 2$
• 12 trees like: $T = 2$
• $T = (x_1 x_2 x_3 x_4) x_1 x_3$
• $T = (x_1 x_2 x_3 x_4) x_1 x_3$
• $T = (x_1 x_2 x_3 x_4) x_1 x_3$

・ロト ・回ト ・ヨト ・ヨト

Graphs Com Simplicial complexes Arbi Other complexes Three

Laplacian

Definition The L(G).

Laplacian matrix of graph G, denoted by

<ロ> <同> <同> < 回> < 回>

Laplacian

Definition The Laplacian matrix of graph G, denoted by L(G). Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\text{deg } v_1, \dots, \text{deg } v_n)$ A(G) = adjacency matrix

(日) (同) (三) (三)

Laplacian

Definition The Laplacian matrix of graph G, denoted by L (G). Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\text{deg } v_1, \dots, \text{deg } v_n)$ A(G) = adjacency matrixDefn 2: $L(G) = \partial(G)\partial(G)^T$ $\partial(G) = \text{incidence matrix (boundary matrix)}$

Laplacian

Definition The reduced Laplacian matrix of graph *G*, denoted by $L_r(G)$. Defn 1: L(G) = D(G) - A(G) $D(G) = \text{diag}(\text{deg } v_1, \dots, \text{deg } v_n)$ A(G) = adjacency matrixDefn 2: $L(G) = \partial(G)\partial(G)^T$ $\partial(G) = \text{incidence matrix (boundary matrix)}$

"Reduced": remove rows/columns corresponding to any one vertex

(4月) (4日) (4日)

Complete graph Arbitrary graphs Threshold graphs

Example

<ロ> <同> <同> < 回> < 回>

Matrix-Tree Theorems

Version I Let $0, \lambda_1, \lambda_2, \dots, \lambda_{n-1}$ be the eigenvalues of *L*. Then *G* has

$$\frac{\lambda_1\lambda_2\cdots\lambda_{n-1}}{n}$$

spanning trees.

Version II G has $|\det L_r(G)|$ spanning trees **Proof** [Version II]

$$\det L_r(G) = \det \frac{\partial_r(G)\partial_r(G)^T}{\sum_{\tau} (\det \frac{\partial_r(T)}{\tau})^2}$$
$$= \sum_{\tau} (\pm 1)^2$$

by Binet-Cauchy

Complete graph Arbitrary graphs Threshold graphs

Example: K_n

$$L(K_n) = nI - J \qquad (n \times n);$$

$$L_r(K_n) = nI - J \qquad (n - 1 \times n - 1)$$

Duval, Klivans, Martin Simplicial spanning trees

*ロト *部ト *注ト *注ト

Graphs Complete g Simplicial complexes Other complexes Threshold g

Example: K_n

$$L(K_n) = nI - J \qquad (n \times n);$$

$$L_r(K_n) = nI - J \qquad (n - 1 \times n - 1)$$

Version I: Eigenvalues of L are n - n (multiplicity 1), n - 0 (multiplicity n - 1), so

$$\frac{n^{n-1}}{n} = n^{n-2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: K_n

$$L(K_n) = nI - J \qquad (n \times n);$$

$$L_r(K_n) = nI - J \qquad (n - 1 \times n - 1)$$

Version I: Eigenvalues of L are n - n (multiplicity 1), n - 0 (multiplicity n - 1), so

$$\frac{n^{n-1}}{n} = n^{n-2}$$

Version II:

det
$$L_r = \prod$$
 eigenvalues
= $(n - 0)^{(n-1)-1}(n - (n - 1))$
= n^{n-2}

<ロ> <同> <同> < 回> < 回>

Complete graph Arbitrary graphs Threshold graphs

Weighted Matrix-Tree Theorem

Τ

$$\sum_{T \in ST(G)} \operatorname{wt} T = |\det \hat{L}_r(G)|,$$

where \hat{L} is weighted Laplacian. Defn 1: $\hat{L}(G) = \hat{D}(G) - \hat{A}(G)$ $\hat{D}(G) = \operatorname{diag}(\operatorname{deg} v_1, \ldots, \operatorname{deg} v_n)$ $\hat{\deg v_i} = \sum_{v_i v_i \in E} x_i x_j$ $\hat{A}(G) = adjacency matrix$ (entry $x_i x_i$ for edge $v_i v_j$) Defn 2: $\hat{L}(G) = \partial(G)B(G)\partial(G)^T$ $\partial(G) =$ incidence matrix B(G) diagonal, indexed by edges, entry $\pm x_i x_i$ for edge $v_i v_i$

(日本)

Complete graph Arbitrary graphs Fhreshold graphs

Example

$$\hat{L} = \begin{pmatrix} 1(2+3+4) & -12 & -13 & -14 \\ -12 & 2(1+3+4) & -23 & -24 \\ -13 & -23 & 3(1+2) & 0 \\ -14 & -24 & 0 & 4(1+2) \end{pmatrix}$$
$$\det \hat{L}_r = (1234)(1+2)(1+2+3+4)$$

*ロト *部ト *注ト *注ト

omplete graph rbitrary graphs **Threshold graphs**

Threshold graphs: Order ideal definition

• Vertices $1, \ldots, n$

Example

э

omplete graph rbitrary graphs hreshold graphs

Threshold graphs: Order ideal definition

- Vertices $1, \ldots, n$
- $\blacktriangleright \ E \in \mathcal{E}, i \notin E, j \in E, i < j \Rightarrow E \cup i j \in \mathcal{E}.$

Example

(人間) ト く ヨ ト く ヨ ト

Graphs Comp Simplicial complexes Arbit Other complexes Three

Complete graph Arbitrary graphs Threshold graphs

Threshold graphs: Order ideal definition

- Vertices $1, \ldots, n$
- $\blacktriangleright \ E \in \mathcal{E}, i \notin E, j \in E, i < j \Rightarrow E \cup i j \in \mathcal{E}.$

 Equivalently, the edges form an initial ideal in the componentwise partial order.

Example

▲ □ ▶ ▲ □ ▶ ▲

Complete graph Arbitrary graphs Threshold graphs

Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and coning.

3

- 4 同 6 4 日 6 4 日 6

Complete graph Arbitrary graphs Threshold graphs

Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and coning.

(人間) ト く ヨ ト く ヨ ト

Complete graph Arbitrary graphs Threshold graphs

Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and coning.

・ 同 ト ・ ヨ ト ・ ヨ ト

Complete graph Arbitrary graphs T**hreshold graphs**

Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and coning.

・ 同 ト ・ ヨ ト ・ ヨ ト

Graphs Complet Simplicial complexes Arbitrar Other complexes Thresho

Eigenvalues of threshold graphs

Theorem [Merris '94] Eigenvalues are given by the transpose of the Ferrers diagram of the degree sequence *d*.

Corollary $\prod_{r \neq 1} (d^T)_r$ spanning trees

/⊒ > < ∃ >

Graphs Comple Simplicial complexes Arbitrar Other complexes Thresho

Complete graph Arbitrary graphs Threshold graphs

Weighted spanning trees of threshold graphs

Theorem [Martin-Reiner '03; implied by Remmel-Williamson '02]: If G is threshold, then

$$\sum_{T\in ST(G)} \text{wt } T = (x_1 \cdots x_n) \prod_{r \neq 1} (\sum_{i=1}^{(d^T)_r} x_i).$$

Example

| 4 同 1 4 三 1 4 三 1

Complete skeleton Simplicial spanning trees Shifted complexes

Complete skeleta of simplicial complexes

Simplicial complex $\Sigma \subseteq 2^V$; $F \subseteq G \in \Sigma \Rightarrow F \in \Sigma$.

- 4 同 6 4 日 6 4 日 6

Complete skeleton Simplicial spanning trees Shifted complexes

Complete skeleta of simplicial complexes

Simplicial complex
$$\Sigma \subseteq 2^V$$
;
 $F \subseteq G \in \Sigma \Rightarrow F \in \Sigma$.

Complete skeleton The *k*-dimensional complete complex on *n* vertices, *i.e.*,

$$\mathcal{K}_n^k = \{F \subseteq V \colon |F| \leq k+1\}$$
 (so $\mathcal{K}_n = \mathcal{K}_n^1$).

Simplicial complexes

Complete skeleton

Simplicial spanning trees of K_n^k [Kalai, '83]

- $\Upsilon \subset K_n^k$ is a simplicial spanning tree of K_n^k when:
 - 0. $\Upsilon_{(k-1)} = K_n^{k-1}$ ("spanning");
 - 1. $\tilde{H}_{k-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");

2.
$$\tilde{H}_k(\Upsilon; \mathbb{Z}) = 0$$
 ("acyclic");

- 3. $|\Upsilon| = \binom{n-1}{k}$ ("count").
 - ▶ If 0. holds, then any two of 1., 2., 3. together imply the third condition.
 - When k = 1, coincides with usual definition.

・ 同 ト ・ ヨ ト ・ ヨ ト

Complete skeleton implicial spanning trees hifted complexes

 $= n^{\binom{n-2}{k}}$

(日) (同) (三) (三)

Counting simplicial spanning trees of K_n^k

Conjecture [Bolker '76]

Complete skeleton implicial spanning trees hifted complexes

Counting simplicial spanning trees of K_n^k

Theorem [Kalai '83]

$$\sum_{\Upsilon \in SST(K_n^k)} |\tilde{H}_{k-1}(\Upsilon)|^2 = n^{\binom{n-2}{k}}$$

(日) (同) (三) (三)

Complete skeleton Simplicial spanning trees Shifted complexes

Weighted simplicial spanning trees of K_n^k

As before,

wt
$$\Upsilon = \prod_{F \in \Upsilon}$$
 wt $F = \prod_{F \in \Upsilon} (\prod_{v \in F} x_v)$

Example:

$$\begin{split} \Upsilon &= \{123, 124, 125, 134, 135, 245\} \\ & \text{wt} \ \Upsilon = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3 \end{split}$$

<ロ> <同> <同> < 回> < 回>

Complete skeleton Simplicial spanning trees Shifted complexes

Weighted simplicial spanning trees of K_n^k

As before,

wt
$$\Upsilon = \prod_{F \in \Upsilon}$$
 wt $F = \prod_{F \in \Upsilon} (\prod_{v \in F} x_v)$

Example:

$$\begin{split} \Upsilon &= \{123, 124, 125, 134, 135, 245\} \\ &\text{wt} \ \Upsilon = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3 \end{split}$$

Theorem [Kalai, '83]

$$\sum_{T \in SST(K_n)} |\tilde{H}_{k-1}(T)|^2 (\text{wt } T) = (x_1 \cdots x_n)^{\binom{n-2}{k-1}} (x_1 + \cdots + x_n)^{\binom{n-2}{k}}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complete skeleton Simplicial spanning trees Shifted complexes

Weighted simplicial spanning trees of K_n^k

As before,

wt
$$\Upsilon = \prod_{F \in \Upsilon}$$
 wt $F = \prod_{F \in \Upsilon} (\prod_{v \in F} x_v)$

Example:

$$\Upsilon = \{123, 124, 125, 134, 135, 245\}$$

wt $\Upsilon = x_1^5 x_2^4 x_3^3 x_4^3 x_5^3$

Theorem [Kalai, '83]

$$\sum_{T \in SST(K_n)} |\tilde{H}_{k-1}(T)|^2 (\text{wt } T) = (x_1 \cdots x_n)^{\binom{n-2}{k-1}} (x_1 + \cdots + x_n)^{\binom{n-2}{k}}$$

(Adin ('92) did something similar for complete *r*-partite complexes.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof

Proof uses determinant of reduced Laplacian of K_n^k . "Reduced" now means pick one vertex, and then remove rows/columns corresponding to all (k - 1)-dimensional faces containing that vertex.

$$\begin{split} L &= \partial \partial^T \\ \partial \colon \Delta_k \to \Delta_{k-1} \text{ boundary} \\ \partial^T \colon \Delta_{k-1} \to \Delta_k \text{ coboundary} \\ \text{Weighted version: Multiply column } F \text{ of } \partial \text{ by } x_F \end{split}$$

Complete skeleton Simplicial spanning trees Shifted complexes

Example n = 4, k = 2

*ロト *部ト *注ト *注ト

Simplicial spanning trees of arbitrary simplicial comlexes

Let Σ be a *d*-dimensional simplicial complex. $\Upsilon \subseteq \Sigma$ is a **simplicial spanning tree** of Σ when:

0.
$$\Upsilon_{(d-1)} = \Sigma_{(d-1)}$$
 ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");

2.
$$\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$$
 ("acyclic");

3.
$$f_d(\Upsilon) = f_d(\Sigma) - \tilde{\beta}_d(\Sigma) + \tilde{\beta}_{d-1}(\Sigma)$$
 ("count").

- If 0. holds, then any two of 1., 2., 3. together imply the third condition.
- When d = 1, coincides with usual definition.

Example

Bipyramid with equator, $\langle 123, 124, 125, 134, 135, 234, 235 \rangle$

Let's figure out all its simplicial spanning trees.

• 同 • • 三 • •

Metaconnectedness

- Denote by $\mathscr{T}(\Sigma)$ the set of simplicial spanning trees of Σ .
- Proposition 𝒮(Σ) ≠ Ø iff Σ is metaconnected, *i.e.* (equivalently)
 - homology type of wedge of spheres;
 - $\tilde{H}_j(\Sigma; \mathbb{Z})$ is finite for all $j < \dim \Sigma$.
- Many interesting complexes are metaconnected, including everything we'll talk about.

Simplicial Matrix-Tree Theorem — Version I

- \triangleright Σ a *d*-dimensional metaconnected simplicial complex
- ► (d-1)-dimensional **(up-down) Laplacian** $L_{d-1} = \partial_{d-1}\partial_{d-1}^T$
- s_d = product of nonzero eigenvalues of L_{d-1} .

Theorem [DKM]

$$h_d := \sum_{\Upsilon \in \mathscr{T}(\Sigma)} | ilde{H}_{d-1}(\Upsilon)|^2 = rac{s_d}{h_{d-1}} | ilde{H}_{d-2}(\Sigma)|^2$$

(日) (同) (三) (三)

Simplicial Matrix-Tree Theorem — Version II

►
$$\Gamma \in \mathscr{T}(\Sigma(d-1))$$

• ∂_{Γ} = restriction of ∂_d to faces not in Γ

• reduced Laplacian $L_{\Gamma} = \partial_{\Gamma} \partial_{\Gamma}^*$

Theorem [DKM]

$$h_d = \sum_{\Upsilon \in \mathscr{T}(\Sigma)} |\tilde{H}_{d-1}(\Upsilon)|^2 = \frac{|\tilde{H}_{d-2}(\Sigma;\mathbb{Z})|^2}{|\tilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} \det L_{\Gamma}.$$

Note: The $|\tilde{H}_{d-2}|$ terms are often trivial.

・ 同 ト ・ ヨ ト ・ ヨ ト

Weighted Simplicial Matrix-Tree Theorems

- ▶ Introduce an indeterminate x_F for each face $F \in \Delta$
- Weighted boundary ∂ : multiply column F of (usual) ∂ by x_F
- ∂_{Γ} = restriction of ∂_d to faces not in Γ
- Weighted reduced Laplacian $\mathbf{L} = \partial_{\Gamma} \partial_{\Gamma}^*$

Theorem [DKM]

$$\mathbf{h}_{d} := \sum_{\Upsilon \in \mathscr{T}(\Sigma)} |\widetilde{H}_{d-1}(\Upsilon)|^{2} \prod_{F \in \Upsilon} x_{F}^{2} = \frac{\mathbf{s}_{d}}{\mathbf{h}_{d-1}} |\widetilde{H}_{d-2}(\Sigma)|^{2}$$

$$\mathbf{h}_{d} = \frac{|\tilde{H}_{d-2}(\Delta;\mathbb{Z})|^{2}}{|\tilde{H}_{d-2}(\Gamma;\mathbb{Z})|^{2}} \det \mathbf{L}_{\Gamma}.$$

Definition of shifted complexes

- ▶ Vertices 1, . . . , *n*
- $\blacktriangleright \ F \in \Sigma, i \notin F, j \in F, i < j \Rightarrow F \cup i j \in \Sigma$
- Equivalently, the k-faces form an initial ideal in the componentwise partial order.
- ► **Example** (bipyramid with equator) (123, 124, 125, 134, 135, 234, 235)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Graphs Simplicial complexes Other complexes Simplicial spanni Shifted complexes

Hasse diagram

Hasse diagram

Links and deletions

- Deletion, $del_1 \Sigma = \{ G : 1 \notin G, G \in \Sigma \}.$
- Link, $lk_1 \Sigma = \{F 1 \colon 1 \in F, F \in \Sigma\}.$
- ▶ Deletion and link are each shifted, with vertices 2,..., n.

Example:

 $\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle$

Links and deletions

- Deletion, $del_1 \Sigma = \{ G : 1 \notin G, G \in \Sigma \}.$
- Link, $lk_1 \Sigma = \{F 1 \colon 1 \in F, F \in \Sigma\}$.
- ▶ Deletion and link are each shifted, with vertices 2,..., n.

Example:

$$\begin{split} \Sigma &= \langle 123, 124, 125, 134, 135, 234, 235 \rangle \\ \mathsf{del}_1 \, \Sigma &= \langle 234, 235 \rangle \end{split}$$

同 ト イ ヨ ト イ ヨ ト

Graphs Simplicial complexes Other complexes Simplicial spannin Shifted complexes

Links and deletions

- Deletion, $del_1 \Sigma = \{ G : 1 \notin G, G \in \Sigma \}.$
- Link, $lk_1 \Sigma = \{F 1 \colon 1 \in F, F \in \Sigma\}$.
- ▶ Deletion and link are each shifted, with vertices 2, ..., n.

Example:

$$\begin{split} \Sigma &= \langle 123, 124, 125, 134, 135, 234, 235 \rangle \\ \text{del}_1 \, \Sigma &= \langle 234, 235 \rangle \\ \text{lk}_1 \, \Sigma &= \langle 23, 24, 25, 34, 35 \rangle \end{split}$$

Complete skeleton Simplicial spanning tree Shifted complexes

Weighted spanning trees

In Weighted Simplicial Matrix Theorem II, pick Γ to be the set of all (d − 1)-dimensional faces containing vertex 1.

| 4 同 1 4 三 1 4 三 1

Weighted spanning trees

- In Weighted Simplicial Matrix Theorem II, pick Γ to be the set of all (d − 1)-dimensional faces containing vertex 1.
- $H_{d-2}(\Gamma;\mathbb{Z})$ and $H_{d-2}(\Sigma;\mathbb{Z})$ are trivial, so,

 $\mathbf{h}_d = \det \mathbf{L}_{\Gamma}$

Complete skeleton Simplicial spanning trees Shifted complexes

Weighted spanning trees

- In Weighted Simplicial Matrix Theorem II, pick Γ to be the set of all (d − 1)-dimensional faces containing vertex 1.
- *H*_{d-2}(Γ; ℤ) and *H*_{d-2}(Σ; ℤ) are trivial, so, by some easy linear algebra,

$$\mathbf{h}_d = \det \mathbf{L}_{\Gamma} = (\prod_{\sigma \in \mathsf{lk}_1 \Sigma} X_{\sigma}) \det(X_1 I + \mathbf{L}_{\mathsf{del}_1 \Sigma, d-1})$$

where
$$X_i = x_i^2$$

< 日 > < 同 > < 三 > < 三 >

Graphs Complete skeleton Simplicial complexes Other complexes Shifted complexes

Weighted spanning trees reduce to eigenvalues

- In Weighted Simplicial Matrix Theorem II, pick Γ to be the set of all (d - 1)-dimensional faces containing vertex 1.
- *H*_{d-2}(Γ; ℤ) and *H*_{d-2}(Σ; ℤ) are trivial, so, by some easy linear algebra,

$$\begin{aligned} \mathbf{h}_{d} &= \det \mathbf{L}_{\Gamma} = (\prod_{\sigma \in \mathsf{lk}_{1}\Sigma} X_{\sigma}) \det(X_{1}I + \mathbf{L}_{\mathsf{del}_{1}\Sigma, d-1}) \\ &= (\prod_{\sigma \in \mathsf{lk}_{1}\Sigma} X_{\sigma}) (\prod_{\substack{\lambda \text{ e'val of} \\ \mathbf{L}_{\mathsf{del}_{1}\Sigma, d-1}}} X_{1} + \lambda), \end{aligned}$$

where $X_i = x_i^2$

| 4 同 1 4 三 1 4 三 1

Graphs Complete s Simplicial complexes Simplicial s Other complexes Shifted con

Complete skeleton Simplicial spanning tree Shifted complexes

Eigenvalues

Theorem [D-Reiner, '02]

Non-zero eigenvalues are given by the transpose of the Ferrers diagram of the (generalized) degree sequence d. Example

< □ > < □ >

Graphs Simplicial complexes Other complexes Simplicial spanni Shifted complexes

Weighted Eigenvalues

Theorem [DKM]

Non-zero weighted eigenvalues are given by the transpose of the Ferrers diagram of the (generalized) degree sequence d. **Example**

$$(2+3)(2+3+4+5)$$

Image: A image: A

Complete skeleton Simplicial spanning tree: Shifted complexes

$\begin{array}{ll} \mbox{Weighted enumeration of SST's in shifted complexes} \\ \mbox{Theorem Let } \Lambda = {\sf lk}_1\,\Sigma, \qquad , \ \Delta = {\sf del}_1\,\Sigma, \end{array}$

Example bipyramid $\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle$ again

$$\Lambda = \mathsf{lk}_1\,\Sigma = \langle 23, 24, 25, 34, 35\rangle$$

$$\Delta = \mathsf{del}_1 \Sigma = \langle 234, 235 \rangle$$

< 日 > < 同 > < 三 > < 三 >

Complete skeleton Simplicial spanning trees Shifted complexes

$\begin{array}{ll} \mbox{Weighted enumeration of SST's in shifted complexes} \\ \mbox{Theorem Let } \Lambda = {\sf lk}_1\,\Sigma, \qquad , \ \Delta = {\sf del}_1\,\Sigma, \end{array}$

Example bipyramid $\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle$ again

$$\Lambda = \mathsf{lk}_1 \Sigma = \langle 23, 24, 25, 34, 35 \rangle$$

$$\Delta = \mathsf{del}_1 \, \Sigma = \langle 234, 235 \rangle$$

 $h_2 = (23)(24)(25)(34)(35)(1 + (2 + 3))(1 + (2 + 3 + 4 + 5))111$

Graphs Simplicial complexes Other complexes Simplicial spanni Shifted complexes

 $\begin{array}{ll} \mbox{Weighted enumeration of SST's in shifted complexes} \\ \mbox{Theorem Let } \Lambda = {\sf lk}_1 \, \Sigma, &, \ \Delta = {\sf del}_1 \, \Sigma, \end{array}$

$$\mathbf{h}_d = \prod_{\sigma \in \Lambda} X_{\sigma \cup 1} \prod_r \left(\left(\sum_{i=1}^{1 + (d(\Delta)^T)_r} X_i \right) / X_1 \right)$$

Example bipyramid $\Sigma = \langle 123, 124, 125, 134, 135, 234, 235 \rangle$ again

$$\begin{split} \Lambda &= \mathsf{lk}_1 \, \Sigma = \langle 23, 24, 25, 34, 35 \rangle \\ \Delta &= \mathsf{del}_1 \, \Sigma = \langle 234, 235 \rangle \end{split}$$

 $\mathbf{h}_2 = (23)(24)(25)(34)(35)(1 + (2 + 3))(1 + (2 + 3 + 4 + 5))111 \\ = (123)(124)(125)(134)(135)((1 + 2 + 3)/1)((1 + 2 + 3 + 4 + 5)/1)$

Graphs Complete skeleton Simplicial complexes Simplicial spannin Other complexes Shifted complexes

Weighted enumeration of SST's in shifted complexes Theorem Let $\Lambda = lk_1 \Sigma$, $\tilde{\Lambda} = 1 * \Lambda$, $\Delta = del_1 \Sigma$, $\tilde{\Delta} = 1 * \Delta$.

$$\mathbf{h}_{d} = \prod_{\sigma \in \Lambda} X_{\sigma \cup 1} \prod_{r} \left(\left(\sum_{i=1}^{1 + (d(\Delta)^{T})_{r}} X_{i} \right) / X_{1} \right)$$
$$= \prod_{\sigma \in \tilde{\Lambda}} X_{\sigma} \prod_{r} \left(\left(\sum_{i=1}^{(d(\tilde{\Delta})^{T})_{r}} X_{i} \right) / X_{1} \right).$$

$$\begin{split} \textbf{Example bipyramid } \Sigma &= \langle 123, 124, 125, 134, 135, 234, 235 \rangle \text{ again } \\ \Lambda &= \mathsf{lk}_1 \, \Sigma = \langle 23, 24, 25, 34, 35 \rangle \quad \tilde{\Lambda} &= \langle 123, 124, 125, 134, 135 \rangle \\ \Delta &= \mathsf{del}_1 \, \Sigma &= \langle 234, 235 \rangle \qquad \tilde{\Delta} &= \langle 1234, 1235 \rangle \end{split}$$

 $\mathbf{h}_2 = (23)(24)(25)(34)(35)(1 + (2 + 3))(1 + (2 + 3 + 4 + 5))111 \\ = (123)(124)(125)(134)(135)((1 + 2 + 3)/1)((1 + 2 + 3 + 4 + 5)/1)$

Fine weighting

• Weight
$$F = \{i_1 < \cdots < i_k\}$$
 by

$$x_{1,i_1}x_{2,i_2}\cdots x_{k,i_k}.$$

- Keeps track of where in each face the vertex appears.
- Can generalize our results on tree enumeration and eigenvalues, but things get more complex.

| 4 同 1 4 三 1 4 三 1

Matroid complexes Cubical complexes Color-shifted complexes

Conjecture for Matroid Complexes

 \mathbf{h}_d again seems to factor nicely, though we can't describe it yet.

Cubical complexes

To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).

| 4 同 1 4 三 1 4 三 1

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.

| 4 同 1 4 三 1 4 三 1

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.
- Analogues of Simplicial Matrix Tree Theorems follow readily (in fact for polyhedral complexes).

- 4 同 ト 4 ヨ ト 4 ヨ ト

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.
- Analogues of Simplicial Matrix Tree Theorems follow readily (in fact for polyhedral complexes).
- Complete skeleta are very nicely behaved for eigenvalues, spanning trees.

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.
- Analogues of Simplicial Matrix Tree Theorems follow readily (in fact for polyhedral complexes).
- Complete skeleta are very nicely behaved for eigenvalues, spanning trees.
- Cubical analogue of shifted complexes have integer eigenvalues; still working on trees.

< 日 > < 同 > < 三 > < 三 >

Definition of color-shifted complexes

- Set of colors
- ▶ n_c vertices, $(c, 1), (c, 2), \dots (c, n_c)$ of color c.
- Faces contain at most one vertex of each color.
- Can replace (c, j) by (c, i) in a face if i < j.
- Example: Faces written as (red,blue,green): 111, 112, 113, 121, 122, 123, 131, 132, 211, 212, 213, 221, 222, 223, 231,232.

| 4 同 1 4 三 1 4 三 1

Graphs Matroid complexes Simplicial complexes Cubical complexes Other complexes Color-shifted complexes

Conjecture for complete color-shifted complexes

Let Δ be the color-shifted complex generated by the face with red a, blue b, green c. Let the red vertices be x_1, \ldots, x_a , the blue vertices be y_1, \ldots, y_b , and the green vertices be z_1, \ldots, z_c .

Conjecture

$$\mathbf{h}_{d}(\Delta) = (\prod_{i=1}^{a} x_{i})^{b+c-1} (\prod_{j=1}^{b} y_{j})^{a+c-1} (\prod_{k=1}^{c} z_{k})^{a+b-1} \times (\sum_{i=1}^{a} x_{i})^{(b-1)(c-1)} (\sum_{j=1}^{b} y_{j})^{(a-1)(c-1)} (\sum_{k=1}^{c} z_{k})^{(a-1)(b-1)}$$

- 4 同 2 4 日 2 4 日 2

Notes on conjecture

This is with coarse weighting. Every vertex v has weight x_v, and every face F has weight

$$x_F = \prod_{v \in F} x_v.$$

The case with two colors is a (complete) Ferrers graph, studied by Ehrenborg and van Willigenburg.

| 4 同 1 4 三 1 4 三 1