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Counting weighted spanning trees of Kn

Theorem [Cayley]: Kn has nn−2 spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. |T | = n − 1

Note: Any two conditions imply the third.

Weighting

vertices? Silly (nn−2(x1 · · · xn))

edges? No nice structure (can’t see nn−2)

both! wt T =
∏

e∈T wt e =
∏

e∈T (
∏

v∈e xv ) Prüfer coding∑
T∈ST (Kn)

wt T = (x1 · · · xn)(x1 + · · ·+ xn)n−2
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Example: K4

I 4 trees like: T =

r r
rr���
� 1

2

3

4 wt T = (x1x2x3x4)x2
2

I 12 trees like: T =

r r
rr
1

2

3

4 wt T = (x1x2x3x4)x1x3

Total is (x1x2x3x4)(x1 + x2 + x3 + x4)2.
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Laplacian

Definition The

reduced

Laplacian matrix of graph G , denoted by
L

r

(G ).

Defn 1: L(G ) = D(G )− A(G )

D(G ) = diag(deg v1, . . . , deg vn)

A(G ) = adjacency matrix

Defn 2: L(G ) = ∂(G )∂(G )T

∂(G ) = incidence matrix (boundary matrix)

“Reduced”: remove rows/columns corresponding to any one vertex
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Example

r r
rr���

� 1

2

3

4 ∂ =

12 13 14 23 24

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2
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Matrix-Tree Theorems

Version I Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then G
has

λ1λ2 · · ·λn−1

n

spanning trees.
Version II G has | det Lr (G )| spanning trees
Proof [Version II]

det Lr (G ) = det ∂r (G )∂r (G )T =
∑
T

(det ∂r (T ))2

=
∑
T

(±1)2

by Binet-Cauchy

Duval, Klivans, Martin Simplicial spanning trees
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Example: Kn

L(Kn) = nI − J (n × n);

Lr (Kn) = nI − J (n − 1× n − 1)

Version I: Eigenvalues of L are n − n (multiplicity 1), n − 0
(multiplicity n − 1), so

nn−1

n
= nn−2

Version II:

det Lr =
∏

eigenvalues

= (n − 0)(n−1)−1(n − (n − 1))

= nn−2
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Weighted Matrix-Tree Theorem

∑
T∈ST (G)

wt T = | det L̂r (G )|,

where L̂ is weighted Laplacian.
Defn 1: L̂(G ) = D̂(G )− Â(G )

D̂(G ) = diag( ˆdegv1, . . . , ˆdegvn)
ˆdegvi =

∑
vivj∈E xixj

Â(G ) = adjacency matrix
(entry xixj for edge vivj)

Defn 2: L̂(G ) = ∂(G )B(G )∂(G )T

∂(G ) = incidence matrix
B(G ) diagonal, indexed by edges,
entry ±xixj for edge vivj
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Example

r r
rr���

� 1

2

3

4

L̂ =


1(2 + 3 + 4) −12 −13 −14
−12 2(1 + 3 + 4) −23 −24
−13 −23 3(1 + 2) 0
−14 −24 0 4(1 + 2)


det L̂r = (1234)(1 + 2)(1 + 2 + 3 + 4)
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Threshold graphs: Order ideal definition

I Vertices 1, . . . , n

I E ∈ E , i 6∈ E , j ∈ E , i < j ⇒ E ∪ i − j ∈ E .

I Equivalently, the edges form an initial ideal in the
componentwise partial order.

Example

r r
rr���

� 1

2

3

4

12

��

HH��

23 14

13

24

34

HH
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Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and
coning. r

r
rr���

� 1

2

3

4
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Eigenvalues of threshold graphs

Theorem [Merris ’94] Eigenvalues are given by the transpose of
the Ferrers diagram of the degree sequence d .

r r
rr���

� 1

2

3

4

1

2

3

4

Corollary
∏

r 6=1(dT )r spanning trees
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Weighted spanning trees of threshold graphs
Theorem [Martin-Reiner ‘03; implied by Remmel-Williamson ‘02]:
If G is threshold, then

∑
T∈ST (G)

wt T = (x1 · · · xn)
∏
r 6=1

(

(dT )r∑
i=1

xi ).

Example

r r
rr���

� 1

2

3

4

1

2

3

4

(1234)(1 + 2)(1 + 2 + 3 + 4)
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Complete skeleta of simplicial complexes

Simplicial complex Σ ⊆ 2V ;
F ⊆ G ∈ Σ⇒ F ∈ Σ.

Complete skeleton The k-dimensional complete complex on n
vertices, i.e.,

K k
n = {F ⊆ V : |F | ≤ k + 1}

(so Kn = K 1
n ).
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Simplicial spanning trees of K k
n [Kalai, ’83]

Υ ⊆ K k
n is a simplicial spanning tree of K k

n when:

0. Υ(k−1) = K k−1
n (“spanning”);

1. H̃k−1(Υ; Z) is a finite group (“connected”);

2. H̃k(Υ; Z) = 0 (“acyclic”);

3. |Υ| =
(n−1

k

)
(“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When k = 1, coincides with usual definition.

Duval, Klivans, Martin Simplicial spanning trees
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Counting simplicial spanning trees of K k
n

Conjecture [Bolker ’76]∑
Υ∈SST (K k

n )

|H̃k−1(Υ)|2

= n(n−2
k )
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Weighted simplicial spanning trees of K k
n

As before,
wt Υ =

∏
F∈Υ

wt F =
∏
F∈Υ

(
∏
v∈F

xv )

Example:
Υ = {123, 124, 125, 134, 135, 245}

wt Υ = x5
1 x4

2 x3
3 x3

4 x3
5

Theorem [Kalai, ’83]∑
T∈SST (Kn)

|H̃k−1(T )|2(wt T ) = (x1 · · · xn)(n−2
k−1)(x1 + · · ·+ xn)(n−2

k )

(Adin (’92) did something similar for complete r -partite
complexes.)
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Proof

Proof uses determinant of reduced Laplacian of K k
n . “Reduced”

now means pick one vertex, and then remove rows/columns
corresponding to all (k − 1)-dimensional faces containing that
vertex.
L = ∂∂T

∂ : ∆k → ∆k−1 boundary
∂T : ∆k−1 → ∆k coboundary
Weighted version: Multiply column F of ∂ by xF

Duval, Klivans, Martin Simplicial spanning trees
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Example n = 4, k = 2

∂T =

12 13 14 23 24 34

123 -1 1 0 -1 0 0
124 -1 0 1 0 -1 0
134 0 -1 1 0 0 -1
234 0 0 0 -1 1 -1

L =


2 −1 −1 1 1 0
−1 2 −1 −1 0 1
−1 −1 2 0 −1 −1
1 −1 0 2 −1 1
1 0 −1 −1 2 −1
0 1 −1 1 −1 2
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Simplicial spanning trees of arbitrary simplicial comlexes

Let Σ be a d-dimensional simplicial complex.
Υ ⊆ Σ is a simplicial spanning tree of Σ when:

0. Υ(d−1) = Σ(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(Σ)− β̃d(Σ) + β̃d−1(Σ) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Example

Bipyramid with equator, 〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3

Let’s figure out all its simplicial spanning trees.
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Metaconnectedness

I Denote by T (Σ) the set of simplicial spanning trees of Σ.
I Proposition T (Σ) 6= ∅ iff Σ is metaconnected, i.e.

(equivalently)
I homology type of wedge of spheres;
I H̃j(Σ; Z) is finite for all j < dim Σ.

I Many interesting complexes are metaconnected, including
everything we’ll talk about.

Duval, Klivans, Martin Simplicial spanning trees
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Simplicial Matrix-Tree Theorem — Version I

I Σ a d-dimensional metaconnected simplicial complex

I (d − 1)-dimensional (up-down) Laplacian Ld−1 = ∂d−1∂
T
d−1

I sd = product of nonzero eigenvalues of Ld−1.

Theorem [DKM]

hd :=
∑

Υ∈T (Σ)

|H̃d−1(Υ)|2 =
sd

hd−1
|H̃d−2(Σ)|2

Duval, Klivans, Martin Simplicial spanning trees
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Simplicial Matrix-Tree Theorem — Version II

I Γ ∈ T (Σ(d − 1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂
∗
Γ

Theorem [DKM]

hd =
∑

Υ∈T (Σ)

|H̃d−1(Υ)|2 =
|H̃d−2(Σ; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.

Note: The |H̃d−2| terms are often trivial.

Duval, Klivans, Martin Simplicial spanning trees
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Weighted Simplicial Matrix-Tree Theorems

I Introduce an indeterminate xF for each face F ∈ ∆

I Weighted boundary ∂: multiply column F of (usual) ∂ by xF

I ∂Γ = restriction of ∂d to faces not in Γ

I Weighted reduced Laplacian L = ∂Γ∂∗Γ

Theorem [DKM]

hd :=
∑

Υ∈T (Σ)

|H̃d−1(Υ)|2
∏
F∈Υ

x2
F =

sd

hd−1
|H̃d−2(Σ)|2

hd =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.

Duval, Klivans, Martin Simplicial spanning trees
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Definition of shifted complexes

I Vertices 1, . . . , n

I F ∈ Σ, i 6∈ F , j ∈ F , i < j ⇒ F ∪ i − j ∈ Σ

I Equivalently, the k-faces form an initial ideal in the
componentwise partial order.

I Example (bipyramid with equator)
〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3
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Hasse diagram

124

125 134

126 135 234

145 235136

123

245236146
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Links and deletions
I Deletion, del1 Σ = {G : 1 6∈ G ,G ∈ Σ}.
I Link, lk1 Σ = {F − 1: 1 ∈ F ,F ∈ Σ}.
I Deletion and link are each shifted, with vertices 2, . . . , n.
I Example:

Σ = 〈123, 124, 125, 134, 135, 234, 235〉

del1 Σ = 〈234, 235〉
lk1 Σ = 〈23, 24, 25, 34, 35〉
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Weighted spanning trees

reduce to eigenvalues

I In Weighted Simplicial Matrix Theorem II, pick Γ to be the
set of all (d − 1)-dimensional faces containing vertex 1.

I Hd−2(Γ; Z) and Hd−2(Σ; Z) are trivial, so,

by some easy linear
algebra,

hd = det LΓ

= (
∏

σ∈lk1 Σ

Xσ) det(X1I + Ldel1 Σ,d−1)

= (
∏

σ∈lk1 Σ

Xσ)(
∏

λ e’val of
Ldel1 Σ,d−1

X1 + λ),

where Xi=x2
i
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Weighted

Eigenvalues
Theorem [D-Reiner, ’02]
Non-zero

weighted

eigenvalues are given by the transpose of the
Ferrers diagram of the (generalized) degree sequence d .
Example
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Non-zero weighted eigenvalues are given by the transpose of the
Ferrers diagram of the (generalized) degree sequence d .
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Weighted enumeration of SST’s in shifted complexes
Theorem Let Λ = lk1 Σ,

Λ̃ = 1 ∗ Λ

, ∆ = del1 Σ,

∆̃ = 1 ∗∆.

hd =
∏
σ∈Λ

Xσ∪1

∏
r

((

1+(d(∆)T )r∑
i=1

Xi )/X1)

=
∏
σ∈Λ̃

Xσ
∏
r

((

(d(∆̃)T )r∑
i=1

Xi )/X1).

Example bipyramid Σ = 〈123, 124, 125, 134, 135, 234, 235〉 again

Λ = lk1 Σ = 〈23, 24, 25, 34, 35〉

Λ̃ = 〈123, 124, 125, 134, 135〉

∆ = del1 Σ = 〈234, 235〉

∆̃ = 〈1234, 1235〉

h2 = (23)(24)(25)(34)(35)(1 + (2 + 3))(1 + (2 + 3 + 4 + 5))111

= (123)(124)(125)(134)(135)((1 + 2 + 3)/1)((1 + 2 + 3 + 4 + 5)/1)
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Fine weighting

I Weight F = {i1 < · · · < ik} by

x1,i1x2,i2 · · · xk,ik .

I Keeps track of where in each face the vertex appears.

I Can generalize our results on tree enumeration and
eigenvalues, but things get more complex.
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Conjecture for Matroid Complexes

hd again seems to factor nicely, though we can’t describe it yet.
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Cubical complexes

I To make boundary work in systematic way, take subcomplexes
of high-enough dimensional cube (or, also possible to just
define polyhedral boundary map).

I Then we can define boundary map, and all the algebraic
topology, including Laplacian.

I Analogues of Simplicial Matrix Tree Theorems follow readily
(in fact for polyhedral complexes).

I Complete skeleta are very nicely behaved for eigenvalues,
spanning trees.

I Cubical analogue of shifted complexes have integer
eigenvalues; still working on trees.
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Definition of color-shifted complexes

I Set of colors

I nc vertices, (c, 1), (c , 2), . . . (c , nc) of color c .

I Faces contain at most one vertex of each color.

I Can replace (c , j) by (c , i) in a face if i < j .

I Example: Faces written as (red,blue,green): 111, 112, 113,
121, 122, 123, 131, 132, 211, 212, 213, 221, 222, 223,
231,232.
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Conjecture for complete color-shifted complexes

Let ∆ be the color-shifted complex generated by the face with red
a, blue b, green c. Let the red vertices be x1, . . . , xa, the blue
vertices be y1, . . . , yb, and the green vertices be z1, . . . , zc .

Conjecture

hd(∆) = (
a∏

i=1

xi )
b+c−1(

b∏
j=1

yj)
a+c−1(

c∏
k=1

zk)a+b−1

× (
a∑

i=1

xi )
(b−1)(c−1)(

b∑
j=1

yj)
(a−1)(c−1)(

c∑
k=1

zk)(a−1)(b−1)
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Notes on conjecture

I This is with coarse weighting. Every vertex v has weight xv ,
and every face F has weight

xF =
∏
v∈F

xv .

I The case with two colors is a (complete) Ferrers graph,
studied by Ehrenborg and van Willigenburg.
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