Simplicial spanning trees

Art Duval ${ }^{1} \quad$ Caroline Klivans ${ }^{2}$ Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ University of Chicago
${ }^{3}$ University of Kansas

Discrete Mathematics \& Representation Theory Seminar University of California, Davis

May 23, 2008

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Weighting

$$
\text { vertices? Silly }\left(n^{n-2}\left(x_{1} \cdots x_{n}\right)\right)
$$

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly $\left(n^{n-2}\left(x_{1} \cdots x_{n}\right)\right)$
edges? No nice structure (can't see n^{n-2})

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly $\left(n^{n-2}\left(x_{1} \cdots x_{n}\right)\right)$
edges? No nice structure (can't see n^{n-2}) both! wt $T=\prod_{e \in T}$ wt $e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right)$ Prüfer coding

Counting weighted spanning trees of K_{n}

Theorem [Cayley]: K_{n} has n^{n-2} spanning trees.
T spanning tree: set of edges containing all vertices and

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. $|T|=n-1$

Note: Any two conditions imply the third.

Weighting

vertices? Silly $\left(n^{n-2}\left(x_{1} \cdots x_{n}\right)\right)$
edges? No nice structure (can't see n^{n-2})

$$
\text { both! wt } T=\prod_{e \in T} \text { wt } e=\prod_{e \in T}\left(\prod_{v \in e} x_{v}\right) \text { Prüfer coding }
$$

$$
\sum_{T \in S T\left(K_{n}\right)} w t T=\left(x_{1} \cdots x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

Example: K_{4}

- 4 trees like: $T=3{ }^{3}$ wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}$

Example: K_{4}

- 4 trees like: $T=$ wh T

Example: K_{4}

-4 trees like: $T=2 \square 4$

$$
\text { wt } T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{2}^{2}
$$

- 12 trees like: $T=2$ d \quad wt $T=\left(x_{1} x_{2} x_{3} x_{4}\right) x_{1} x_{3}$

Total is $\left(x_{1} x_{2} x_{3} x_{4}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{2}$.

Laplacian

Definition The $L(G)$.

Laplacian

Definition The Laplacian matrix of graph G, denoted by $L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Laplacian

Definition The
Laplacian matrix of graph G, denoted by $L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

Laplacian

Definition The reduced Laplacian matrix of graph G, denoted by $L_{r}(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

"Reduced": remove rows/columns corresponding to any one vertex

Example

$\partial=$| | 12 | 13 | 14 | 23 | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | 0 | 0 |
| 2 | 1 | 0 | 0 | -1 | -1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 0 | 1 | 0 | 1 |

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
$$

Matrix-Tree Theorems

Version I Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then G has

$$
\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

spanning trees.
Version II G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees Proof [Version II]

$$
\begin{aligned}
\operatorname{det} L_{r}(G) & =\operatorname{det} \partial_{r}(G) \partial_{r}(G)^{T}=\sum_{T}\left(\operatorname{det} \partial_{r}(T)\right)^{2} \\
& =\sum_{T}(\pm 1)^{2}
\end{aligned}
$$

by Binet-Cauchy

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J & (n \times n) ; \\
L_{r}\left(K_{n}\right) & =n I-J & (n-1 \times n-1)
\end{aligned}
$$

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J & (n \times n) ; \\
L_{r}\left(K_{n}\right) & =n l-J & (n-1 \times n-1)
\end{aligned}
$$

Version I: Eigenvalues of L are $n-n$ (multiplicity 1), $n-0$ (multiplicity $n-1$), so

$$
\frac{n^{n-1}}{n}=n^{n-2}
$$

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J & (n \times n) ; \\
L_{r}\left(K_{n}\right) & =n l-J & (n-1 \times n-1)
\end{aligned}
$$

Version I: Eigenvalues of L are $n-n$ (multiplicity 1), $n-0$ (multiplicity $n-1$), so

$$
\frac{n^{n-1}}{n}=n^{n-2}
$$

Version II:

$$
\begin{aligned}
\operatorname{det} L_{r} & =\prod \text { eigenvalues } \\
& =(n-0)^{(n-1)-1}(n-(n-1)) \\
& =n^{n-2}
\end{aligned}
$$

Weighted Matrix-Tree Theorem

$$
\sum_{T \in S T(G)} \text { wt } T=\left|\operatorname{det} \hat{L}_{r}(G)\right|
$$

where \hat{L} is weighted Laplacian.
Defn 1: $\hat{L}(G)=\hat{D}(G)-\hat{A}(G)$
$\hat{D}(G)=\operatorname{diag}\left(\hat{\operatorname{eg}} v_{1}, \ldots, \hat{\operatorname{deg}} v_{n}\right)$
$\operatorname{deg} v_{i}=\sum_{v_{i} v_{j} \in E} x_{i} x_{j}$
$\hat{A}(G)=$ adjacency matrix
(entry $x_{i} x_{j}$ for edge $v_{i} v_{j}$)
Defn 2: $\hat{L}(G)=\partial(G) B(G) \partial(G)^{T}$
$\partial(G)=$ incidence matrix
$B(G)$ diagonal, indexed by edges,
entry $\pm x_{i} x_{j}$ for edge $v_{i} v_{j}$

Example

$$
\begin{gathered}
\hat{L}=\left(\begin{array}{cccc}
1(2+3+4) & -12 & -13 & -14 \\
-12 & 2(1+3+4) & -23 & -24 \\
-13 & -23 & 3(1+2) & 0 \\
-14 & -24 & 0 & 4(1+2)
\end{array}\right) \\
\operatorname{det} \hat{L}_{r}=(1234)(1+2)(1+2+3+4)
\end{gathered}
$$

Threshold graphs: Order ideal definition

- Vertices $1, \ldots, n$

Example

Threshold graphs: Order ideal definition

- Vertices $1, \ldots$, n
- $E \in \mathcal{E}, i \notin E, j \in E, i<j \Rightarrow E \cup i-j \in \mathcal{E}$.

Example

Threshold graphs: Order ideal definition

- Vertices $1, \ldots, n$
- $E \in \mathcal{E}, i \notin E, j \in E, i<j \Rightarrow E \cup i-j \in \mathcal{E}$.
- Equivalently, the edges form an initial ideal in the componentwise partial order.

Example

Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and coning.
3^{\bullet}

Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and coning.
.4

Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and coning.

Threshold graphs: Recursive building

Defn 2: Can build recursively, by adding isolated vertices, and coning.

Eigenvalues of threshold graphs

Theorem [Merris '94] Eigenvalues are given by the transpose of the Ferrers diagram of the degree sequence d.

Corollary $\prod_{r \neq 1}\left(d^{T}\right)_{r}$ spanning trees

Weighted spanning trees of threshold graphs

Theorem [Martin-Reiner '03; implied by Remmel-Williamson '02]: If G is threshold, then

$$
\sum_{T \in S T(G)} \text { wt } T=\left(x_{1} \cdots x_{n}\right) \prod_{r \neq 1}^{\left(d^{T}\right)_{r}}\left(\sum_{i=1} x_{i}\right)
$$

Example

$$
(1234)(1+2)(1+2+3+4)
$$

Complete skeleta of simplicial complexes

Simplicial complex $\Sigma \subseteq 2^{V}$;

$$
F \subseteq G \in \Sigma \Rightarrow F \in \Sigma
$$

Complete skeleta of simplicial complexes

Simplicial complex $\Sigma \subseteq 2^{V}$;

$$
F \subseteq G \in \Sigma \Rightarrow F \in \Sigma
$$

Complete skeleton The k-dimensional complete complex on n vertices, i.e.,

$$
K_{n}^{k}=\{F \subseteq V:|F| \leq k+1\}
$$

$$
\left(\text { so } K_{n}=K_{n}^{1}\right) .
$$

Simplicial spanning trees of K_{n}^{k} [Kalai, '83]

$\Upsilon \subseteq K_{n}^{k}$ is a simplicial spanning tree of K_{n}^{k} when:
0. $\Upsilon_{(k-1)}=K_{n}^{k-1}$ ("spanning");

1. $\tilde{H}_{k-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{k}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $|\Upsilon|=\binom{n-1}{k}$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $k=1$, coincides with usual definition.

Counting simplicial spanning trees of K_{n}^{k}

Conjecture [Bolker '76]

$$
\sum_{\Upsilon \in S S T\left(K_{n}^{k}\right)}=n^{\binom{n-2}{k}}
$$

Counting simplicial spanning trees of K_{n}^{k}

Theorem [Kalai '83]

$$
\sum_{\Upsilon \in S S T\left(K_{n}^{k}\right)}\left|\tilde{H}_{k-1}(\Upsilon)\right|^{2}=n^{\binom{n-2}{k}}
$$

Weighted simplicial spanning trees of K_{n}^{k}

As before,

$$
\text { wt } \Upsilon=\prod_{F \in \Upsilon} w t F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example:

$$
\begin{gathered}
\Upsilon=\{123,124,125,134,135,245\} \\
w t \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{gathered}
$$

Weighted simplicial spanning trees of K_{n}^{k}

As before,

$$
\text { wt } \Upsilon=\prod_{F \in \Upsilon} \mathrm{wt} F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example:

$$
\begin{gathered}
\Upsilon=\{123,124,125,134,135,245\} \\
w t \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{gathered}
$$

Theorem [Kalai, '83]

$$
\sum_{T \in S S T\left(K_{n}\right)}\left|\tilde{H}_{k-1}(T)\right|^{2}(w t T)=\left(x_{1} \cdots x_{n}\right){ }^{\binom{n-2}{k-1}}\left(x_{1}+\cdots+x_{n}\right)\binom{n-2}{k}
$$

Weighted simplicial spanning trees of K_{n}^{k}

As before,

$$
\text { wt } \Upsilon=\prod_{F \in \Upsilon} \mathrm{wt} F=\prod_{F \in \Upsilon}\left(\prod_{v \in F} x_{v}\right)
$$

Example:

$$
\begin{gathered}
\Upsilon=\{123,124,125,134,135,245\} \\
w t \Upsilon=x_{1}^{5} x_{2}^{4} x_{3}^{3} x_{4}^{3} x_{5}^{3}
\end{gathered}
$$

Theorem [Kalai, '83]

$$
\sum_{T \in S S T\left(K_{n}\right)}\left|\tilde{H}_{k-1}(T)\right|^{2}(w t T)=\left(x_{1} \cdots x_{n}\right){ }^{\binom{n-2}{k-1}}\left(x_{1}+\cdots+x_{n}\right)\binom{n-2}{k}
$$

(Adin ('92) did something similar for complete r-partite complexes.)

Proof

Proof uses determinant of reduced Laplacian of K_{n}^{k}. "Reduced" now means pick one vertex, and then remove rows/columns corresponding to all ($k-1$)-dimensional faces containing that vertex.
$L=\partial \partial^{T}$
$\partial: \Delta_{k} \rightarrow \Delta_{k-1}$ boundary
$\partial^{T}: \Delta_{k-1} \rightarrow \Delta_{k}$ coboundary
Weighted version: Multiply column F of ∂ by x_{F}

Example $n=4, k=2$

$$
\begin{aligned}
& \partial^{T}=\begin{array}{c|cccccc}
& 12 & 13 & 14 & 23 & 24 & 34 \\
\hline 123 & -1 & 1 & 0 & -1 & 0 & 0 \\
124 & -1 & 0 & 1 & 0 & -1 & 0 \\
134 & 0 & -1 & 1 & 0 & 0 & -1 \\
234 & 0 & 0 & 0 & -1 & 1 & -1
\end{array} \\
& L=\left(\begin{array}{cccccc}
2 & -1 & -1 & 1 & 1 & 0 \\
-1 & 2 & -1 & -1 & 0 & 1 \\
-1 & -1 & 2 & 0 & -1 & -1 \\
1 & -1 & 0 & 2 & -1 & 1 \\
1 & 0 & -1 & -1 & 2 & -1 \\
0 & 1 & -1 & 1 & -1 & 2
\end{array}\right)
\end{aligned}
$$

Simplicial spanning trees of arbitrary simplicial comlexes

Let Σ be a d-dimensional simplicial complex.
$\gamma \subseteq \Sigma$ is a simplicial spanning tree of Σ when:
0. $\Upsilon_{(d-1)}=\Sigma_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(\Upsilon)=f_{d}(\Sigma)-\tilde{\beta}_{d}(\Sigma)+\tilde{\beta}_{d-1}(\Sigma)$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $d=1$, coincides with usual definition.

Example

Bipyramid with equator, $\langle 123,124,125,134,135,234,235\rangle$

Let's figure out all its simplicial spanning trees.

Metaconnectedness

- Denote by $\mathscr{T}(\Sigma)$ the set of simplicial spanning trees of Σ.
- Proposition $\mathscr{T}(\Sigma) \neq \emptyset$ iff Σ is metaconnected, i.e. (equivalently)
- homology type of wedge of spheres;
- $\tilde{H}_{j}(\Sigma ; \mathbb{Z})$ is finite for all $j<\operatorname{dim} \Sigma$.
- Many interesting complexes are metaconnected, including everything we'll talk about.

Simplicial Matrix-Tree Theorem — Version I

- Σ a d-dimensional metaconnected simplicial complex
- $(d-1)$-dimensional (up-down) Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}^{T}$
- $s_{d}=$ product of nonzero eigenvalues of L_{d-1}.

Theorem [DKM]

$$
h_{d}:=\sum_{\Upsilon \in \mathscr{T}(\Sigma)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\Sigma)\right|^{2}
$$

Simplicial Matrix-Tree Theorem - Version II

- $\Gamma \in \mathscr{T}(\Sigma(d-1))$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial_{\Gamma}^{*}$

Theorem [DKM]

$$
h_{d}=\sum_{\Upsilon \in \mathscr{T}(\Sigma)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{\left|\tilde{H}_{d-2}(\Sigma ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} L_{\Gamma} .
$$

Note: The $\left|\tilde{H}_{d-2}\right|$ terms are often trivial.

Weighted Simplicial Matrix-Tree Theorems

- Introduce an indeterminate x_{F} for each face $F \in \Delta$
- Weighted boundary $\boldsymbol{\partial}$: multiply column F of (usual) ∂ by x_{F}
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- Weighted reduced Laplacian $\mathbf{L}=\partial_{\Gamma} \partial_{\Gamma}^{*}$

Theorem [DKM]

$$
\begin{gathered}
\mathbf{h}_{d}:=\sum_{\Upsilon \in \mathscr{O}(\Sigma)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2} \prod_{F \in \mathcal{Y}} x_{F}^{2}=\frac{\mathbf{s}_{d}}{\mathbf{h}_{d-1}}\left|\tilde{H}_{d-2}(\Sigma)\right|^{2} \\
\mathbf{h}_{d}=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \mathbf{L}_{\Gamma} .
\end{gathered}
$$

Definition of shifted complexes

- Vertices $1, \ldots, n$
- $F \in \Sigma, i \notin F, j \in F, i<j \Rightarrow F \cup i-j \in \Sigma$
- Equivalently, the k-faces form an initial ideal in the componentwise partial order.
- Example (bipyramid with equator) $\langle 123,124,125,134,135,234,235\rangle$

Hasse diagram

Hasse diagram

Links and deletions

- Deletion, $\operatorname{del}_{1} \Sigma=\{G: 1 \notin G, G \in \Sigma\}$.
- Link, $\mathrm{Ik}_{1} \Sigma=\{F-1: 1 \in F, F \in \Sigma\}$.
- Deletion and link are each shifted, with vertices $2, \ldots, n$.
- Example:

$$
\Sigma=\langle 123,124,125,134,135,234,235\rangle
$$

Links and deletions

- Deletion, $\operatorname{del}_{1} \Sigma=\{G: 1 \notin G, G \in \Sigma\}$.
- Link, $\mathrm{Ik}_{1} \Sigma=\{F-1: 1 \in F, F \in \Sigma\}$.
- Deletion and link are each shifted, with vertices $2, \ldots, n$.
- Example:

$$
\begin{aligned}
\Sigma & =\langle 123,124,125,134,135,234,235\rangle \\
\operatorname{del}_{1} \Sigma & =\langle 234,235\rangle
\end{aligned}
$$

Links and deletions

- Deletion, $\operatorname{del}_{1} \Sigma=\{G: 1 \notin G, G \in \Sigma\}$.
- Link, $\mathrm{Ik}_{1} \Sigma=\{F-1: 1 \in F, F \in \Sigma\}$.
- Deletion and link are each shifted, with vertices $2, \ldots, n$.
- Example:

$$
\begin{aligned}
\Sigma & =\langle 123,124,125,134,135,234,235\rangle \\
\operatorname{del}_{1} \Sigma & =\langle 234,235\rangle \\
\mathrm{lk}_{1} \Sigma & =\langle 23,24,25,34,35\rangle
\end{aligned}
$$

Weighted spanning trees

- In Weighted Simplicial Matrix Theorem II, pick 「 to be the set of all $(d-1)$-dimensional faces containing vertex 1 .

Weighted spanning trees

- In Weighted Simplicial Matrix Theorem II, pick 「 to be the set of all $(d-1)$-dimensional faces containing vertex 1 .
- $H_{d-2}(\Gamma ; \mathbb{Z})$ and $H_{d-2}(\Sigma ; \mathbb{Z})$ are trivial, so,

$$
\mathbf{h}_{d}=\operatorname{det} \mathbf{L}_{\Gamma}
$$

Weighted spanning trees

- In Weighted Simplicial Matrix Theorem II, pick 「 to be the set of all $(d-1)$-dimensional faces containing vertex 1 .
- $H_{d-2}(\Gamma ; \mathbb{Z})$ and $H_{d-2}(\Sigma ; \mathbb{Z})$ are trivial, so, by some easy linear algebra,

$$
\mathbf{h}_{d}=\operatorname{det} \mathbf{L}_{\Gamma}=\left(\prod_{\sigma \in \mid \mathrm{k}_{1} \Sigma} X_{\sigma}\right) \operatorname{det}\left(X_{1} I+\mathbf{L}_{\operatorname{del}_{1} \Sigma, d-1}\right)
$$

where $X_{i}=x_{i}^{2}$

Weighted spanning trees reduce to eigenvalues

- In Weighted Simplicial Matrix Theorem II, pick 「 to be the set of all $(d-1)$-dimensional faces containing vertex 1 .
- $H_{d-2}(\Gamma ; \mathbb{Z})$ and $H_{d-2}(\Sigma ; \mathbb{Z})$ are trivial, so, by some easy linear algebra,

$$
\begin{aligned}
\mathbf{h}_{d}=\operatorname{det} \mathbf{L}_{\Gamma} & =\left(\prod_{\sigma \in \mid \mathrm{k}_{1} \Sigma} X_{\sigma}\right) \operatorname{det}\left(X_{1} I+\mathbf{L}_{\mathrm{del}_{1} \Sigma, d-1}\right) \\
& =\left(\prod_{\sigma \in \mid \mathbf{k}_{1} \Sigma} X_{\sigma}\right)\left(\prod_{\substack{\lambda \text { éval of }^{\mathbf{L}_{\text {del }} \Sigma, d-1}}} X_{1}+\lambda\right),
\end{aligned}
$$

where $X_{i}=x_{i}^{2}$

Eigenvalues

Theorem [D-Reiner, '02]
Non-zero
eigenvalues are given by the transpose of the Ferrers diagram of the (generalized) degree sequence d. Example

Weighted Eigenvalues

Theorem [DKM]
Non-zero weighted eigenvalues are given by the transpose of the Ferrers diagram of the (generalized) degree sequence d.

Example

$$
(2+3)(2+3+4+5)
$$

Weighted enumeration of SST's in shifted complexes
Theorem Let $\Lambda=\mathrm{Ik}_{1} \Sigma$,
, $\Delta=\operatorname{del}_{1} \Sigma$,

Example bipyramid $\Sigma=\langle 123,124,125,134,135,234,235\rangle$ again
$\Lambda=\mathrm{lk}_{1} \Sigma=\langle 23,24,25,34,35\rangle$
$\Delta=\operatorname{del}_{1} \Sigma=\langle 234,235\rangle$

Weighted enumeration of SST's in shifted complexes
Theorem Let $\Lambda=\mathrm{Ik}_{1} \Sigma$,
, $\Delta=\operatorname{del}_{1} \Sigma$,

Example bipyramid $\Sigma=\langle 123,124,125,134,135,234,235\rangle$ again
$\Lambda=\mathrm{lk}_{1} \Sigma=\langle 23,24,25,34,35\rangle$
$\Delta=\operatorname{del}_{1} \Sigma=\langle 234,235\rangle$
$\mathbf{h}_{2}=(23)(24)(25)(34)(35)(1+(2+3))(1+(2+3+4+5)) 111$

Weighted enumeration of SST's in shifted complexes
Theorem Let $\Lambda=\mathrm{lk}_{1} \Sigma$,
, $\Delta=\operatorname{del}_{1} \Sigma$,

$$
\mathbf{h}_{d}=\prod_{\sigma \in \Lambda} X_{\sigma \cup 1} \prod_{r}\left(\left(\sum_{i=1}^{1+\left(d(\Delta)^{\top}\right)_{r}} X_{i}\right) / X_{1}\right)
$$

Example bipyramid $\Sigma=\langle 123,124,125,134,135,234,235\rangle$ again

$$
\begin{aligned}
& \Lambda=\mathrm{Ik}_{1} \Sigma=\langle 23,24,25,34,35\rangle \\
& \Delta=\operatorname{del}_{1} \Sigma=\langle 234,235\rangle
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{h}_{2} & =(23)(24)(25)(34)(35)(1+(2+3))(1+(2+3+4+5)) 111 \\
& =(123)(124)(125)(134)(135)((1+2+3) / 1)((1+2+3+4+5) / 1)
\end{aligned}
$$

Weighted enumeration of SST's in shifted complexes
Theorem Let $\Lambda=\operatorname{lk}_{1} \Sigma, \tilde{\Lambda}=1 * \Lambda, \Delta=\operatorname{del}_{1} \Sigma, \tilde{\Delta}=1 * \Delta$.

$$
\begin{aligned}
\mathbf{h}_{d} & =\prod_{\sigma \in \Lambda} X_{\sigma \cup 1} \prod_{r}\left(\left(\sum_{i=1}^{1+\left(d(\Delta)^{T}\right)_{r}} X_{i}\right) / X_{1}\right) \\
& =\prod_{\sigma \in \tilde{\Lambda}} X_{\sigma} \prod_{r}\left(\left(\sum_{i=1}^{\left(d(\tilde{\Delta})^{T}\right)_{r}} X_{i}\right) / X_{1}\right) .
\end{aligned}
$$

Example bipyramid $\Sigma=\langle 123,124,125,134,135,234,235\rangle$ again

$$
\begin{array}{ll}
\Lambda=\mathrm{Ik}_{1} \Sigma=\langle 23,24,25,34,35\rangle & \tilde{\Lambda}=\langle 123,124,125,134,135\rangle \\
\Delta=\operatorname{del}_{1} \Sigma=\langle 234,235\rangle & \tilde{\Delta}=\langle 1234,1235\rangle
\end{array}
$$

$$
\begin{aligned}
\mathbf{h}_{2} & =(23)(24)(25)(34)(35)(1+(2+3))(1+(2+3+4+5)) 111 \\
& =(123)(124)(125)(134)(135)((1+2+3) / 1)((1+2+3+4+5) / 1)
\end{aligned}
$$

Fine weighting

- Weight $F=\left\{i_{1}<\cdots<i_{k}\right\}$ by

$$
x_{1, i_{1}} x_{2, i_{2}} \cdots x_{k, i_{k}} .
$$

- Keeps track of where in each face the vertex appears.
- Can generalize our results on tree enumeration and eigenvalues, but things get more complex.

Conjecture for Matroid Complexes

\mathbf{h}_{d} again seems to factor nicely, though we can't describe it yet.

Cubical complexes

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).

Cubical complexes

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.

Cubical complexes

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.
- Analogues of Simplicial Matrix Tree Theorems follow readily (in fact for polyhedral complexes).

Cubical complexes

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.
- Analogues of Simplicial Matrix Tree Theorems follow readily (in fact for polyhedral complexes).
- Complete skeleta are very nicely behaved for eigenvalues, spanning trees.

Cubical complexes

- To make boundary work in systematic way, take subcomplexes of high-enough dimensional cube (or, also possible to just define polyhedral boundary map).
- Then we can define boundary map, and all the algebraic topology, including Laplacian.
- Analogues of Simplicial Matrix Tree Theorems follow readily (in fact for polyhedral complexes).
- Complete skeleta are very nicely behaved for eigenvalues, spanning trees.
- Cubical analogue of shifted complexes have integer eigenvalues; still working on trees.

Definition of color-shifted complexes

- Set of colors
- n_{c} vertices, $(c, 1),(c, 2), \ldots\left(c, n_{c}\right)$ of color c.
- Faces contain at most one vertex of each color.
- Can replace (c, j) by (c, i) in a face if $i<j$.
- Example: Faces written as (red,blue,green): 111, 112, 113, 121, 122, 123, 131, 132, 211, 212, 213, 221, 222, 223, 231,232.

Conjecture for complete color-shifted complexes

Let Δ be the color-shifted complex generated by the face with red a, blue b, green c. Let the red vertices be x_{1}, \ldots, x_{a}, the blue vertices be y_{1}, \ldots, y_{b}, and the green vertices be z_{1}, \ldots, z_{c}.

Conjecture

$$
\begin{aligned}
\mathbf{h}_{d}(\Delta)= & \left(\prod_{i=1}^{a} x_{i}\right)^{b+c-1}\left(\prod_{j=1}^{b} y_{j}\right)^{a+c-1}\left(\prod_{k=1}^{c} z_{k}\right)^{a+b-1} \\
& \times\left(\sum_{i=1}^{a} x_{i}\right)^{(b-1)(c-1)}\left(\sum_{j=1}^{b} y_{j}\right)^{(a-1)(c-1)}\left(\sum_{k=1}^{c} z_{k}\right)^{(a-1)(b-1)}
\end{aligned}
$$

Notes on conjecture

- This is with coarse weighting. Every vertex v has weight x_{v}, and every face F has weight

$$
x_{F}=\prod_{v \in F} x_{v}
$$

- The case with two colors is a (complete) Ferrers graph, studied by Ehrenborg and van Willigenburg.

