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simplicial spanning trees

Definition of simplicial spanning trees

Let ∆ be a d-dimensional simplicial complex.
Υ ⊆ ∆ is a simplicial spanning tree of ∆ when:

0. Υ(d−1) = ∆(d−1) (“spanning”);

1. H̃d(Υ; Z) = 0 (“acyclic”);

2. H̃d−1(Υ; Q) = 0 (“connected”);

3. fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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simplicial spanning trees

Metaconnectedness

I Denote by T (∆) the set of simplicial spanning trees of ∆.

I Proposition T (∆) 6= ∅ iff ∆ is metaconnected (homology
type of wedge of spheres).

I Many interesting complexes are metaconnected, including
everything we’ll talk about.
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Theorems

Simplicial Matrix-Tree Theorem — Version II

I ∆d = metaconnected simplicial complex

I Γ ∈ T (∆(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂
∗
Γ

Theorem [DKM, 2006]

hd =
∑

Υ∈T (∆)

|H̃d−1(Υ)|2 =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.
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Theorems

Weighted Simplicial Matrix-Tree Theorem — Version II

I ∆d = metaconnected simplicial complex

I Introduce an indeterminate xF for each face F ∈ ∆

I Weighted boundary ∂: multiply column F of (usual) ∂ by xF

I Γ ∈ T (∆(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I Weighted reduced Laplacian L = ∂Γ∂∗Γ

Theorem [DKM, 2006]

hd =
∑

Υ∈T (∆)

|H̃d−1(Υ)|2
∏
F∈Υ

x2
F =

|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.
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Definition

Definition of shifted complexes

I Vertices 1, . . . , n

I F ∈ ∆, i 6∈ F , j ∈ F , i < j ⇒ F ∪ i − j ∈ ∆

I Equivalently, the k-faces form an initial ideal in the
componentwise partial order.

I Example (bipyramid with equator)
〈123, 124, 125, 134, 135, 234, 235〉
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Definition

Hasse diagram

124

125 134

126 135 234

145 235136

123

245236146
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Definition

Links and deletions

I Deletion, del1 ∆ = {G : 1 6∈ G ,G ∈ ∆}.
I Link, lk1 ∆ = {F − 1: 1 ∈ F ,F ∈ ∆}.
I Deletion and link are each shifted, with vertices 2, . . . , n.

I Example:

∆ = 〈123, 124, 125, 134, 135, 234, 235〉
del1 ∆ = 〈234, 235〉
lk1 ∆ = 〈23, 24, 25, 34, 35〉
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Fine weightings

The Combinatorial fine weighting

Let ∆d be a shifted complex on vertices [n].
For each facet A = {a1 < a2 < · · · < ad+1}, define

xA =
d+1∏
i=1

xi ,ai
.

Example If Υ = 〈123, 124, 134, 135, 235〉 is a simplicial spanning
tree of ∆, its contribution to h2 is

(x1,1x2,2x3,3)(x1,1x2,2x3,4)(x1,1x2,3x3,4)(x1,1x2,3x3,5)(x1,2x2,3x3,5)
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Fine weightings

From “Combinatorial” to “Algebraic”

I In Weighted Simplicial Matrix Theorem II, pick Γ to be the
set of all (d − 1)-dimensional faces containing vertex 1.

I Hd−2(Γ; Z) and Hd−2(∆; Z) are trivial, so,

by some easy linear
algebra,

hd = det LΓ

= (
∏

σ∈lk1 ∆

↑ Xσ) det(X1,1I + L̂del1 ∆,d−1)

= (
∏

σ∈lk1 ∆

↑ Xσ)(
∏

λ e’val of
L̂del1 ∆,d−1

X1,1 + λ),

where L̂ is an ”algebraic fined weighted Laplacian”.
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Fine weightings

The Algebraic fine weighted boundary map

For faces A ⊂ B ∈ ∆ with dim A = i − 1, dim B = i , define

XAB =
↑d−i xB

↑d−i+1 xA

where ↑xi ,j = xi+1, j .

I Construct weighted boundary map ∂ by multiplying (A,B)
entry of usual boundary map ∂ by XAB .

I Example:

X(235,25) =
x12x23x35

x22x35

I Weighted boundary maps ∂ satisfy ∂∂ = 0.
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Definitions

Critical pairs

Definition A critical pair of a shifted complex ∆d is an ordered
pair (A,B) of (d + 1)-sets of integers, where

I A ∈ ∆ and B 6∈ ∆; and

I B covers A in componentwise order.
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Definitions

The Signature of a critical pair
Let (A,B) be a critical pair of a complex ∆:

A = {a1 < a2 < · · · < ai < · · · < ad+1},
B = A \ {ai} ∪ {ai + 1}.

Definition The signature of (A,B) is the ordered pair(
{a1, a2, . . . , ai−1}, ai

)
.

Example ∆ = 〈123, 124, 125, 134, 135, 234, 235〉 (the bipyramid)

critical pair signature

(125,126)
(135,136)
(135,145)
(235,236)
(235,245)
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Definitions

The Signature of a critical pair
Let (A,B) be a critical pair of a complex ∆:

A = {a1 < a2 < · · · < ai < · · · < ad+1},
B = A \ {ai} ∪ {ai + 1}.

Definition The signature of (A,B) is the ordered pair(
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Eigenvalues

Finely Weighted Laplacian Eigenvalues

Theorem [DKM 2007]

Let ∆ be a shifted complex.

Then the finely weighted Laplacian eigenvalues of ∆ are specified
completely by the signatures of critical pairs of ∆.

signature (S , a) ↔ eigenvalue
1

↑XS

a∑
j=1

XS∪j
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Eigenvalues

Examples of finely weighted eigenvalues

I Critical pair (135,145); signature (1,3):

X11X21 + X11X22 + X11X23

X21

I Critical pair (235,236); signature (23,5):

X11X22X33 + X12X22X33 + X12X23X33 + X12X23X34 + X12X23X35

X22X33
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Eigenvalues
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Eigenvalues

Corollaries

I Generalizes D.-Reiner formula for eigenvalues of shifted
complexes in terms of degree sequences. (The “a” of the
signatures are the entries of the conjugate degree sequence.)

I We can reconstruct a shifted complex from its finely weighted
eigenvalues, so we can “hear the shape of a shifted complex”,
at least if our ears are fine enough.

Duval, Klivans, Martin University of Texas at El Paso, University of Chicago, University of Kansas

A Simplicial matrix-tree theorem, II. Examples



Simplicial matrix-tree theorems Shifted complexes Critical pairs Other complexes

Eigenvalues

Corollaries

I Generalizes D.-Reiner formula for eigenvalues of shifted
complexes in terms of degree sequences. (The “a” of the
signatures are the entries of the conjugate degree sequence.)

I We can reconstruct a shifted complex from its finely weighted
eigenvalues, so we can “hear the shape of a shifted complex”,
at least if our ears are fine enough.

Duval, Klivans, Martin University of Texas at El Paso, University of Chicago, University of Kansas

A Simplicial matrix-tree theorem, II. Examples



Simplicial matrix-tree theorems Shifted complexes Critical pairs Other complexes

Enumeration

Deletion-link recursion

We can compute signatures recursively, from deletion and link, as
follows:

I Each (S , a) from del1 ∆ is also a signature of ∆.

I Each (S , a) from lk1 ∆ becomes signature (S ∪ 1, a) of ∆.

I Additionally, β̃d−1(del1 ∆) copies of (∅, 1).

Example
complex signature

∆=〈123, 124, 125, 234, 235〉

{(2, 3), (23, 5), (12, 5), (13, 5), (1, 3)}
del1 ∆=〈234, 235〉 {(2, 3), (23, 5)}
lk1 ∆=〈23, 24, 25, 34, 35〉 {(2, 5), (3, 5), (∅, 3)}
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Enumeration

Finely weighted enumeration of SST’s in shifted complexes

Theorem hd =
(∏

σ∈lk1 ∆ Xσ∪1

) (∏
(S,a)∈sign.(del1 ∆)

Pa
j=1 XS∪j

XS∪1

)
.

Example

lk1 ∆ = 〈23, 24, 25, 34, 35〉
del1 ∆ = 〈234, 235〉 sign.(del1 ∆) = {(2, 3), (23, 5)}

hd(∆) = (X123X124X134X125X135)

×
(

X12 + X22 + X23

X12

)(
X123 + X223 + X233 + X234 + X235

X123

)
.
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Enumeration

Corollary

By specializing to d = 1, we get a formula from Martin-Reiner
(itself a special case of a result due to Remmel and Williamson) of
finely weighted enumeration of spanning trees of threshold graphs
(1-dimensional shifted complexes).
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Color-shifted complexes

Definition of color-shifted complexes

I Set of colors

I nc vertices, (c, 1), (c , 2), . . . (c , nc) of color c .

I Faces contain at most one vertex of each color.

I Can replace (c , j) by (c , i) in a face if i < j .

I Example: Faces written as (red,blue,green): 111, 112, 113,
121, 122, 123, 131, 132, 211, 212, 213, 221, 222, 223,
231,232.
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Color-shifted complexes

Conjecture for complete color-shifted complexes

Let ∆ be the color-shifted complex generated by the face with red
a, blue b, green c. Let the red vertices be x1, . . . , xa, the blue
vertices be y1, . . . , yb, and the green vertices be z1, . . . , zc .

Conjecture

hd(∆) = (
a∏

i=1

xi )
b+c−1(

b∏
j=1

yj)
a+c−1(

c∏
k=1

zk)a+b−1

× (
a∑

i=1

xi )
(b−1)(c−1)(

b∑
j=1

yj)
(a−1)(c−1)(

c∑
k=1

zk)(a−1)(b−1)
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Color-shifted complexes

Notes on conjecture

I This is with coarse weighting. Every vertex v has weight xv ,
and every face F has weight

xF =
∏
v∈F

xv .

I The case with two colors is a (complete) Ferrers graph,
studied by Ehrenborg and van Willigenburg.
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Matroid complexes

Conjecture for Matroid Complexes

I hd again seems to factor nicely, though we can’t describe it
yet.

I Once again, with coarse weighting
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