A Simplicial matrix-tree theorem, II. Examples

Art Duval ${ }^{1} \quad$ Caroline Klivans ${ }^{2}$ Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ University of Chicago
${ }^{3}$ University of Kansas

AMS Central Section Meeting
Special Session on Geometric Combinatorics
DePaul University
October 5, 2007

Definition of simplicial spanning trees

Let Δ be a d-dimensional simplicial complex.
$\Upsilon \subseteq \Delta$ is a simplicial spanning tree of Δ when:
0. $\Upsilon_{(d-1)}=\Delta_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
2. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Q})=0$ ("connected");
3. $f_{d}(\Upsilon)=f_{d}(\Delta)-\tilde{\beta}_{d}(\Delta)+\tilde{\beta}_{d-1}(\Delta)$ ("count").

- If 0 . holds, then any two of 1., 2., 3. together imply the third condition.
- When $d=1$, coincides with usual definition.

Metaconnectedness

- Denote by $\mathscr{T}(\Delta)$ the set of simplicial spanning trees of Δ.
- Proposition $\mathscr{T}(\Delta) \neq \emptyset$ iff Δ is metaconnected (homology type of wedge of spheres).
- Many interesting complexes are metaconnected, including everything we'll talk about.

Simplicial Matrix-Tree Theorem - Version II

- $\Delta^{d}=$ metaconnected simplicial complex
- $\Gamma \in \mathscr{T}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial_{\Gamma}^{*}$

Theorem [DKM, 2006]

$$
h_{d}=\sum_{\Upsilon \in \mathscr{T}(\Delta)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} L_{\Gamma}
$$

Weighted Simplicial Matrix-Tree Theorem - Version II

- $\Delta^{d}=$ metaconnected simplicial complex
- Introduce an indeterminate x_{F} for each face $F \in \Delta$
- Weighted boundary ∂ : multiply column F of (usual) ∂ by x_{F}
- $\Gamma \in \mathscr{T}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of ∂_{d} to faces not in Γ
- Weighted reduced Laplacian $\mathbf{L}=\partial_{\Gamma} \partial_{\Gamma}^{*}$

Theorem [DKM, 2006]

$$
\mathbf{h}_{d}=\sum_{\Upsilon \in \mathscr{T}(\Delta)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2} \prod_{F \in \Upsilon} x_{F}^{2}=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} \mathbf{L}_{\Gamma}
$$

Definition of shifted complexes

- Vertices $1, \ldots, n$
- $F \in \Delta, i \notin F, j \in F, i<j \Rightarrow F \cup i-j \in \Delta$
- Equivalently, the k-faces form an initial ideal in the componentwise partial order.
- Example (bipyramid with equator) $\langle 123,124,125,134,135,234,235\rangle$

Hasse diagram

Hasse diagram

Links and deletions

- Deletion, $\operatorname{del}_{1} \Delta=\{G: 1 \notin G, G \in \Delta\}$.
- Link, $\mathrm{lk}_{1} \Delta=\{F-1: 1 \in F, F \in \Delta\}$.
- Deletion and link are each shifted, with vertices $2, \ldots, n$.
- Example:

$$
\begin{aligned}
\Delta & =\langle 123,124,125,134,135,234,235\rangle \\
\operatorname{del}_{1} \Delta & =\langle 234,235\rangle \\
\mathrm{Ik}_{1} \Delta & =\langle 23,24,25,34,35\rangle
\end{aligned}
$$

The Combinatorial fine weighting

Let Δ^{d} be a shifted complex on vertices $[n]$.
For each facet $A=\left\{a_{1}<a_{2}<\cdots<a_{d+1}\right\}$, define

$$
x_{A}=\prod_{i=1}^{d+1} x_{i, a_{i}}
$$

Example If $\Upsilon=\langle 123,124,134,135,235\rangle$ is a simplicial spanning tree of Δ, its contribution to \mathbf{h}_{2} is

$$
\left(x_{1,1} x_{2,2} x_{3,3}\right)\left(x_{1,1} x_{2,2} x_{3,4}\right)\left(x_{1,1} x_{2,3} x_{3,4}\right)\left(x_{1,1} x_{2,3} x_{3,5}\right)\left(x_{1,2} x_{2,3} x_{3,5}\right)
$$

From "Combinatorial" to "Algebraic"

- In Weighted Simplicial Matrix Theorem II, pick 「 to be the set of all $(d-1)$-dimensional faces containing vertex 1 .

From "Combinatorial" to "Algebraic"

- In Weighted Simplicial Matrix Theorem II, pick 「 to be the set of all $(d-1)$-dimensional faces containing vertex 1 .
- $H_{d-2}(\Gamma ; \mathbb{Z})$ and $H_{d-2}(\Delta ; \mathbb{Z})$ are trivial, so,

$$
\mathbf{h}_{d}=\operatorname{det} \mathbf{L}_{\Gamma}
$$

From "Combinatorial" to "Algebraic"

- In Weighted Simplicial Matrix Theorem II, pick 「 to be the set of all $(d-1)$-dimensional faces containing vertex 1 .
- $H_{d-2}(\Gamma ; \mathbb{Z})$ and $H_{d-2}(\Delta ; \mathbb{Z})$ are trivial, so, by some easy linear algebra,

$$
\mathbf{h}_{d}=\operatorname{det} \mathbf{L}_{\Gamma}=\left(\prod_{\sigma \in \mid \mathbf{k}_{1} \Delta} \uparrow X_{\sigma}\right) \operatorname{det}\left(X_{1,1} I+\hat{\mathbf{L}}_{\operatorname{del}_{1} \Delta, d-1}\right)
$$

where $\hat{\mathbf{L}}$ is an "algebraic fined weighted Laplacian".

From "Combinatorial" to "Algebraic"

- In Weighted Simplicial Matrix Theorem II, pick 「 to be the set of all $(d-1)$-dimensional faces containing vertex 1 .
- $H_{d-2}(\Gamma ; \mathbb{Z})$ and $H_{d-2}(\Delta ; \mathbb{Z})$ are trivial, so, by some easy linear algebra,

$$
\begin{aligned}
\mathbf{h}_{d}=\operatorname{det} \mathbf{L}_{\Gamma} & =\left(\prod_{\sigma \in \mathrm{l}_{1} \Delta} \uparrow X_{\sigma}\right) \operatorname{det}\left(X_{1,1} I+\hat{\mathbf{L}}_{\text {del }_{1} \Delta, d-1}\right) \\
& =\left(\prod_{\sigma \in \mathrm{lk}_{1} \Delta} \uparrow X_{\sigma}\right)\left(\prod_{\substack{\lambda \\
\hat{\mathbf{L}}_{\text {del } 1} \Delta, d-1}} X_{1,1}+\lambda\right),
\end{aligned}
$$

where $\hat{\mathbf{L}}$ is an "algebraic fined weighted Laplacian".

The Algebraic fine weighted boundary map

For faces $A \subset B \in \Delta$ with $\operatorname{dim} A=i-1, \operatorname{dim} B=i$, define

$$
X_{A B}=\frac{\uparrow^{d-i} x_{B}}{\uparrow^{d-i+1} x_{A}}
$$

where $\uparrow x_{i, j}=x_{i+1, j}$.

- Construct weighted boundary map $\boldsymbol{\partial}$ by multiplying (A, B) entry of usual boundary map ∂ by $X_{A B}$.
- Example:

$$
x_{(235,25)}=\frac{x_{12} x_{23} x_{35}}{x_{22} x_{35}}
$$

- Weighted boundary maps $\boldsymbol{\partial}$ satisfy $\boldsymbol{\partial} \boldsymbol{\partial}=0$.

Critical pairs

Definition A critical pair of a shifted complex Δ^{d} is an ordered pair (A, B) of $(d+1)$-sets of integers, where

- $A \in \Delta$ and $B \notin \Delta$; and
- B covers A in componentwise order.

Critical pairs

Critical pairs

Critical pairs

The Signature of a critical pair

Let (A, B) be a critical pair of a complex Δ :

$$
\begin{aligned}
& A=\left\{a_{1}<a_{2}<\cdots<a_{i}<\cdots<a_{d+1}\right\}, \\
& B=A \backslash\left\{a_{i}\right\} \cup\left\{a_{i}+1\right\} .
\end{aligned}
$$

Definition The signature of (A, B) is the ordered pair

$$
\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, a_{i}\right)
$$

Example $\Delta=\langle 123,124,125,134,135,234,235\rangle$ (the bipyramid)

critical pair	signature
$(125,126)$	
$(135,136)$	
$(135,145)$	
$(235,236)$	
$(235,245)$	

The Signature of a critical pair

Let (A, B) be a critical pair of a complex Δ :

$$
\begin{aligned}
& A=\left\{a_{1}<a_{2}<\cdots<a_{i}<\cdots<a_{d+1}\right\}, \\
& B=A \backslash\left\{a_{i}\right\} \cup\left\{a_{i}+1\right\} .
\end{aligned}
$$

Definition The signature of (A, B) is the ordered pair

$$
\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, a_{i}\right)
$$

Example $\Delta=\langle 123,124,125,134,135,234,235\rangle$ (the bipyramid)

critical pair	signature
$(125,126)$	$(12,5)$
$(135,136)$	
$(135,145)$	
$(235,236)$	
$(235,245)$	

The Signature of a critical pair

Let (A, B) be a critical pair of a complex Δ :

$$
\begin{aligned}
& A=\left\{a_{1}<a_{2}<\cdots<a_{i}<\cdots<a_{d+1}\right\}, \\
& B=A \backslash\left\{a_{i}\right\} \cup\left\{a_{i}+1\right\}
\end{aligned}
$$

Definition The signature of (A, B) is the ordered pair

$$
\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, a_{i}\right)
$$

Example $\Delta=\langle 123,124,125,134,135,234,235\rangle$ (the bipyramid)

critical pair	signature
$(125,126)$	$(12,5)$
$(135,136)$	$(13,5)$
$(135,145)$	
$(235,236)$	
$(235,245)$	

The Signature of a critical pair

Let (A, B) be a critical pair of a complex Δ :

$$
\begin{aligned}
& A=\left\{a_{1}<a_{2}<\cdots<a_{i}<\cdots<a_{d+1}\right\}, \\
& B=A \backslash\left\{a_{i}\right\} \cup\left\{a_{i}+1\right\}
\end{aligned}
$$

Definition The signature of (A, B) is the ordered pair

$$
\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, a_{i}\right)
$$

Example $\Delta=\langle 123,124,125,134,135,234,235\rangle$ (the bipyramid)

critical pair	signature
$(125,126)$	$(12,5)$
$(135,136)$	$(13,5)$
$(135,145)$	$(1,3)$
$(235,236)$	
$(235,245)$	

The Signature of a critical pair

Let (A, B) be a critical pair of a complex Δ :

$$
\begin{aligned}
& A=\left\{a_{1}<a_{2}<\cdots<a_{i}<\cdots<a_{d+1}\right\}, \\
& B=A \backslash\left\{a_{i}\right\} \cup\left\{a_{i}+1\right\}
\end{aligned}
$$

Definition The signature of (A, B) is the ordered pair

$$
\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, a_{i}\right) .
$$

Example $\Delta=\langle 123,124,125,134,135,234,235\rangle$ (the bipyramid)

critical pair	signature
$(125,126)$	$(12,5)$
$(135,136)$	$(13,5)$
$(135,145)$	$(1,3)$
$(235,236)$	$(23,5)$
$(235,245)$	

The Signature of a critical pair

Let (A, B) be a critical pair of a complex Δ :

$$
\begin{aligned}
& A=\left\{a_{1}<a_{2}<\cdots<a_{i}<\cdots<a_{d+1}\right\}, \\
& B=A \backslash\left\{a_{i}\right\} \cup\left\{a_{i}+1\right\}
\end{aligned}
$$

Definition The signature of (A, B) is the ordered pair

$$
\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, a_{i}\right)
$$

Example $\Delta=\langle 123,124,125,134,135,234,235\rangle$ (the bipyramid)

critical pair	signature
$(125,126)$	$(12,5)$
$(135,136)$	$(13,5)$
$(135,145)$	$(1,3)$
$(235,236)$	$(23,5)$
$(235,245)$	$(2,3)$

Finely Weighted Laplacian Eigenvalues

Theorem [DKM 2007]
Let Δ be a shifted complex.
Then the finely weighted Laplacian eigenvalues of Δ are specified completely by the signatures of critical pairs of Δ.

$$
\text { signature }(S, a) \quad \leftrightarrow \quad \text { eigenvalue } \frac{1}{\uparrow X_{S}} \sum_{j=1}^{a} X_{S \cup j}
$$

Examples of finely weighted eigenvalues

- Critical pair $(135,145)$; signature $(1,3)$:

$$
\frac{X_{11} X_{21}+X_{11} X_{22}+X_{11} X_{23}}{X_{21}}
$$

Examples of finely weighted eigenvalues

- Critical pair $(135,145)$; signature $(1,3)$:

$$
\frac{X_{11} X_{21}+X_{11} X_{22}+X_{11} X_{23}}{X_{21}}
$$

- Critical pair $(235,236)$; signature $(23,5)$:

$$
\frac{X_{11} X_{22} X_{33}+X_{12} X_{22} X_{33}+X_{12} X_{23} X_{33}+X_{12} X_{23} X_{34}+X_{12} X_{23} X_{35}}{X_{22} X_{33}}
$$

Corollaries

- Generalizes D.-Reiner formula for eigenvalues of shifted complexes in terms of degree sequences. (The "a" of the signatures are the entries of the conjugate degree sequence.)

Corollaries

- Generalizes D.-Reiner formula for eigenvalues of shifted complexes in terms of degree sequences. (The "a" of the signatures are the entries of the conjugate degree sequence.)
- We can reconstruct a shifted complex from its finely weighted eigenvalues, so we can "hear the shape of a shifted complex", at least if our ears are fine enough.

Deletion-link recursion

We can compute signatures recursively, from deletion and link, as follows:

- Each (S, a) from $\operatorname{del}_{1} \Delta$ is also a signature of Δ.
- Each (S, a) from $\mathrm{lk}_{1} \Delta$ becomes signature $(S \cup 1, a)$ of Δ.
- Additionally, $\tilde{\beta}_{d-1}\left(\operatorname{del}_{1} \Delta\right)$ copies of $(\emptyset, 1)$.

Example

complex	signature
$\Delta=\langle 123,124,125,234,235\rangle$	

Deletion-link recursion

We can compute signatures recursively, from deletion and link, as follows:

- Each (S, a) from $\operatorname{del}_{1} \Delta$ is also a signature of Δ.
- Each (S, a) from $\mathrm{lk}_{1} \Delta$ becomes signature $(S \cup 1, a)$ of Δ.
- Additionally, $\tilde{\beta}_{d-1}\left(\operatorname{del}_{1} \Delta\right)$ copies of $(\emptyset, 1)$.

Example

complex	signature
$\Delta=\langle 123,124,125,234,235\rangle$	
$\operatorname{del}_{1} \Delta=\langle 234,235\rangle$	
$\mathrm{I}_{1} \Delta=\langle 23,24,25,34,35\rangle$	

Deletion-link recursion

We can compute signatures recursively, from deletion and link, as follows:

- Each (S, a) from $\operatorname{del}_{1} \Delta$ is also a signature of Δ.
- Each (S, a) from $\mathrm{lk}_{1} \Delta$ becomes signature $(S \cup 1, a)$ of Δ.
- Additionally, $\tilde{\beta}_{d-1}\left(\operatorname{del}_{1} \Delta\right)$ copies of $(\emptyset, 1)$.

Example

complex	signature
$\Delta=\langle 123,124,125,234,235\rangle$	
$\operatorname{del}_{1} \Delta=\langle 234,235\rangle$	$\{(2,3),(23,5)\}$
$\mathrm{Ik}_{1} \Delta=\langle 23,24,25,34,35\rangle$	$\{(2,5),(3,5),(\emptyset, 3)\}$

Deletion-link recursion

We can compute signatures recursively, from deletion and link, as follows:

- Each (S, a) from $\operatorname{del}_{1} \Delta$ is also a signature of Δ.
- Each (S, a) from $\mathrm{lk}_{1} \Delta$ becomes signature $(S \cup 1, a)$ of Δ.
- Additionally, $\tilde{\beta}_{d-1}\left(\operatorname{del}_{1} \Delta\right)$ copies of $(\emptyset, 1)$.

Example

complex	signature
$\Delta=\langle 123,124,125,234,235\rangle$	$\{(2,3),(23,5),(12,5),(13,5),(1,3)\}$
$\operatorname{del}_{1} \Delta=\langle 234,235\rangle$	$\{(2,3),(23,5)\}$
$\mathrm{Ik}_{1} \Delta=\langle 23,24,25,34,35\rangle$	$\{(2,5),(3,5),(\emptyset, 3)\}$

Finely weighted enumeration of SST's in shifted complexes

$$
\text { Theorem } \left.\mathbf{h}_{d}=\left(\prod_{\sigma \in \mid k_{1} \Delta} X_{\sigma \cup 1}\right)\left(\prod_{(S, a) \in \operatorname{sign}^{(d e l} 1} \Delta\right) \frac{\sum_{j=1}^{\beta} X_{S \cup j}}{X_{S \cup 1}}\right) .
$$

Example

$$
\begin{aligned}
& \mathrm{Ik}_{1} \Delta=\langle 23,24,25,34,35\rangle \\
& \operatorname{del}_{1} \Delta=\langle 234,235\rangle \quad \text { sign. }\left(\operatorname{del}_{1} \Delta\right)=\{(2,3),(23,5)\} \\
& \\
& \mathbf{h}_{d}(\Delta)=\left(X_{123} X_{124} X_{134} X_{125} X_{135}\right) \\
& \times\left(\frac{X_{12}+X_{22}+X_{23}}{X_{12}}\right)\left(\frac{X_{123}+X_{223}+X_{233}+X_{234}+X_{235}}{X_{123}}\right) .
\end{aligned}
$$

Corollary

By specializing to $d=1$, we get a formula from Martin-Reiner (itself a special case of a result due to Remmel and Williamson) of finely weighted enumeration of spanning trees of threshold graphs (1-dimensional shifted complexes).

Definition of color-shifted complexes

- Set of colors
- n_{c} vertices, $(c, 1),(c, 2), \ldots\left(c, n_{c}\right)$ of color c.
- Faces contain at most one vertex of each color.
- Can replace (c, j) by (c, i) in a face if $i<j$.
- Example: Faces written as (red,blue,green): 111, 112, 113, 121, 122, 123, 131, 132, 211, 212, 213, 221, 222, 223, 231,232.

Conjecture for complete color-shifted complexes

Let Δ be the color-shifted complex generated by the face with red a, blue b, green c. Let the red vertices be x_{1}, \ldots, x_{a}, the blue vertices be y_{1}, \ldots, y_{b}, and the green vertices be z_{1}, \ldots, z_{c}.

Conjecture

$$
\begin{aligned}
\mathbf{h}_{d}(\Delta)= & \left(\prod_{i=1}^{a} x_{i}\right)^{b+c-1}\left(\prod_{j=1}^{b} y_{j}\right)^{a+c-1}\left(\prod_{k=1}^{c} z_{k}\right)^{a+b-1} \\
& \times\left(\sum_{i=1}^{a} x_{i}\right)^{(b-1)(c-1)}\left(\sum_{j=1}^{b} y_{j}\right)^{(a-1)(c-1)}\left(\sum_{k=1}^{c} z_{k}\right)^{(a-1)(b-1)}
\end{aligned}
$$

Notes on conjecture

- This is with coarse weighting. Every vertex v has weight x_{v}, and every face F has weight

$$
x_{F}=\prod_{v \in F} x_{v}
$$

- The case with two colors is a (complete) Ferrers graph, studied by Ehrenborg and van Willigenburg.

Conjecture for Matroid Complexes

- \mathbf{h}_{d} again seems to factor nicely, though we can't describe it yet.
- Once again, with coarse weighting

