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Sandpiles and chip-firing

Motivation Think of a sandpile, with grains of sand on vertices
of a graph. When the pile at one place is too large, it
topples, sending grains to all its neighbors.

Abstraction Graph G with vertices v1, . . . , vn. Degree of vi is di .
Place ci ∈ Z chips (grains of sand) on vi .

Toppling If ci ≥ di , then vi may fire by sending one chip to
each of its neighbors.r r
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Source vertex

I To keep things going, pick one vertex vr to be a source vertex.
We can always add chips to vr .

I Put another way: cr can be any value.

I We might think cr ≤ 0, and ci ≥ 0 when i 6= r , or that vr can
fire even when cr ≤ dr .
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Critical configurations

I A configuration is stable when no vertex (except the source
vertex) can fire.

I A configuration is recurrent when a series of topplings leads
back to that configuration, without letting any vertex (except
the source vertex) go negative.

I A configuration is critical when it is stable and recurrent.
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Fact: Every configuration topples to a unique critical configuration.
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Laplacian
Let’s make a matrix of how chips move when each vertex fires:r r
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� 1
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4

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2

 = D − A = ∂1∂
T
1 ,

where

∂1 =

12 13 14 23 24

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

So firing v is subtracting Lv (row/column v from L) from
(c1, . . . , cn).
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Kernel ∂0

I Did you notice?: Sum of chips stays constant.

I Also recall value of the source vertex can be anything,
including negative (other vertices should stay positive).

I So we may as well insist that∑
i

ci = 0.

In other words, ∂0c = 0, i.e., c ∈ ker ∂0.

I We can pick ci , i 6= r , arbitrarily, and keep c ∈ ker ∂0 by
picking cr appropriately.r r
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Critical group

I Consider two configurations (in ker ∂0) to be equivalent when
you can get from one to the other by chip-firing.

I Recall every configuration is equivalent to a critical
configuration.

I This equivalence means adding/subtracting integer multiples
of Lvi .

I In other words, instead of ker ∂0, we look at

K (G ) := (ker ∂0)/(im L) = (ker ∂0)/(im ∂1∂
T
1 )

the critical group. (It is a graph invariant.)
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Reduced Laplacian and spanning trees

Theorem (Biggs ’99)

K := (ker ∂0)/(im L) ∼= Zn−1/(im Lr ),

where Lr denotes reduced Laplacian; remove row and column
corresponding to source vertex.

Corollary

|K (G )| is the number of spanning trees of G.

Proof.
If M is a full rank t-dimensional matrix, then

|(Zt)/(im M)| = ± det M

and | det Lr | counts spanning trees.
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Example

r r
rr��

�
� 1

2

3

4 L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2



Lr =

 3 −1 −1
−1 2 0
−1 0 2


det Lr = 8, and there are 8 spanning trees of this graph
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Reduced Laplacian

Generalize to simplicial complexes

Let ∆ be a d-dimensional simplicial complex.

Cd(∆; Z)
∂T

d

�
∂d

Cd−1(∆; Z)
∂d−1−−−→ Cd−2(∆; Z)→ · · ·

Cd−1(∆; Z)
Ld−1−−−→ Cd−1(∆; Z)

∂d−1−−−→ Cd−2(∆; Z)→ · · ·

Define

K (∆) := (ker ∂d−1)/(im Ld−1)

where Ld−1 = ∂d ∂
T
d is the (d − 1)-dimensional up-down Laplacian.

Can we compute it with a reduced Laplacian? How do we reduce
the Laplacian? And what about the trees?
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Definition
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Reduced Laplacian

Simplicial spanning trees of arbitrary simplicial complexes

Let ∆ be a d-dimensional simplicial complex, and assume it is
APC, acyclic in positive codimension, i.e., H̃j(∆; Z) is finite for all
j < d .
Υ ⊆ ∆ is a simplicial spanning tree of ∆ when:

0. Υ(d−1) = ∆(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Further ideas

Definition
Spanning trees
Reduced Laplacian

Example

Bipyramid with equator, 〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3

Let’s figure out all its simplicial spanning trees.
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Definition
Spanning trees
Reduced Laplacian

Reduced Laplacians to count spanning trees

Let T (∆) denote the spanning trees of ∆.

I ∆ a d-dimensional APC complex

I Γ ∈ T (∆(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced (up-down) (d − 1)-dimensional Laplacian LΓ = ∂Γ∂
T

Γ

Simplicial Matrix-Tree Theorem [DKM ’09]

hd =
∑

Υ∈T (∆)

|H̃d−1(Υ)|2 =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.

Note: The |H̃d−2| terms are often trivial.
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Bipyramid again

Γ = 12, 13, 14, 15 spanning tree of 1-skeleton

LΓ =

23 24 25 34 35

23 3 -1 -1 1 1
24 -1 2 0 -1 0
25 -1 0 2 0 -1
34 1 -1 0 2 0
35 1 0 -1 0 2

det LΓ = 15.
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Further ideas

Definition
Spanning trees
Reduced Laplacian

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group,
remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

I To count spanning trees, remove a
(d − 1)-dimensional spanning tree from up-down
Laplacian.

I To compute critical group, remove a
(d − 1)-dimensional spanning tree from up-down
Laplacian.
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Further ideas

Definition
Spanning trees
Reduced Laplacian

Spanning trees

Theorem (DKM)

K (∆) := (ker ∂d−1)/(im Ld−1) ∼= Zt/(im LΓ)

where Γ is a torsion-free (d − 1)-dimensional spanning tree and
t = dim LΓ.

Corollary

|K (∆)| is the torsion-weighted number of d-dimensional spanning
trees of ∆.

Proof.
|K (∆)| = |Zt/(im LΓ)| = | det LΓ|, which counts (torsion-weighted)
spanning trees.
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Graphs
Simplicial complexes

Further ideas

Interpretation: Discrete flow
Example: Spheres
Extension: Critical ring?

What does it look like?

K (∆) := (ker ∂d−1)/(im Ld−1) ⊆ Zm

I Put integers on (d − 1)-faces of ∆. Orient faces arbitrarily.
d = 2: flow; d = 3: circulation; etc.

I conservative flow
I d = 2: chips do not accumulate or deplete at any vertex;
I d = 3: face circulation at each edge adds to zero.

I By theorem, just specify values off the spanning tree.

1

4

5
2

6
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Further ideas

Interpretation: Discrete flow
Example: Spheres
Extension: Critical ring?

Firing faces

K (∆) := (ker ∂d−1)/(im Ld−1) ⊆ Zm

Toppling/firing moves the flow to “neighboring” (d − 1)-faces,
across d-faces.

1

3

3

3

4

2 2

1 05
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Further ideas

Interpretation: Discrete flow
Example: Spheres
Extension: Critical ring?

Open problem: Critical configurations?

I What are the critical configurations?

I i.e., canonical set of representatives

I We could pick any set of representatives; by definition, there
is some sequence of firings taking any configuration to the
representative.

I But this misses the sense of “critical”.

I Main obstacle is idea of what is “positive”.
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Further ideas

Interpretation: Discrete flow
Example: Spheres
Extension: Critical ring?

Example: Spheres

Theorem
If ∆ is a sphere, with n facets, then K (∆) ∼= Zn.

K (∆) := (ker ∂d−1)/(im Ld−1)

Proof.

I K (∆) is generated by boundaries of facets ∂F .

I In a sphere, the Laplacian of a ridge shows if facets F ,G are
adjacent, then ∂F ≡ ±∂G (mod im L).

I So K (∆) has a single generator, so it is cyclic.

I |K (∆)| is the number of spanning trees, and there is one tree
for every facet (remove that facet for the tree).
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Interpretation: Discrete flow
Example: Spheres
Extension: Critical ring?

Riemann-Roch Theorem for Graphs

Baker-Norine (’07)

Algebraic geometry Graph theory
Riemann surface Graph

Divisor Chip configuration

Linear equivalence Sequence of
(i.e., equivalence mod principal divisors) chip-firing moves

Picard group Critical group
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and now simplicial complexes?

Algebraic geometry Simplicial complexes
Variety Simplicial complex

Algebraic cycle Simplicial (co)chain

Rational equivalence Flow redistribution
(i.e., equiv. mod principal divisors) (i.e., equiv. mod Laplacians)

Chow group Simplicial critical group

Chow ring ?????

In other words, how can we define a multiplication on elements
(equivalence classes) of the simplicial critical group?
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