Critical Groups of Simplicial Complexes

Art Duval¹ Caroline Klivans² Jeremy Martin³

¹University of Texas at El Paso

²University of Chicago

³University of Kansas

Formal Power Series and Algebraic Combinatorics Reykjavik, Iceland June 17, 2011

- 4 同 6 4 日 6 4 日 6

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
- Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .

- Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
- Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .
 - Toppling If $c_i \ge d_i$, then v_i may fire by sending one chip to each of its neighbors.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
- Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .
 - Toppling If $c_i \ge d_i$, then v_i may fire by sending one chip to each of its neighbors.

・ 同 ト ・ ヨ ト ・ ヨ

To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.

▲ 同 ▶ → 三 ▶

- To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.
- Put another way: c_r can be any value.

- ● ● ●

- To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.
- Put another way: c_r can be any value.
- ▶ We might think $c_r \leq 0$, and $c_i \geq 0$ when $i \neq r$, or that v_r can fire even when $c_r \leq d_r$.

- To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r.
- Put another way: c_r can be any value.
- ▶ We might think $c_r \leq 0$, and $c_i \geq 0$ when $i \neq r$, or that v_r can fire even when $c_r \leq d_r$.

A configuration is stable when no vertex (except the source vertex) can fire.

□→ < □→</p>

3.5

- A configuration is stable when no vertex (except the source vertex) can fire.
- A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.

- A configuration is stable when no vertex (except the source vertex) can fire.
- A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- ► A configuration is critical when it is stable and recurrent.

- A configuration is stable when no vertex (except the source vertex) can fire.
- A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- ► A configuration is critical when it is stable and recurrent.

- A configuration is stable when no vertex (except the source vertex) can fire.
- A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- ► A configuration is critical when it is stable and recurrent.

Fact: Every configuration topples to a unique critical configuration.

Laplacian

Let's make a matrix of how chips move when each vertex fires:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Laplacian

Let's make a matrix of how chips move when each vertex fires:

$$\begin{array}{c} 3 \\ 2 \\ \end{array} \begin{array}{c} 1 \\ 4 \\ \end{array} \begin{array}{c} L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \\ \end{pmatrix} = D - A$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Laplacian

Let's make a matrix of how chips move when each vertex fires:

$$\begin{array}{c} 3 \\ 2 \\ \end{array} \begin{array}{c} 1 \\ 4 \end{array} \qquad L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} = D - A = \partial_1 \partial_1^T,$$

where

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Laplacian

Let's make a matrix of how chips move when each vertex fires:

$$\begin{array}{c} 3 \\ 2 \\ \end{array} \begin{array}{c} 1 \\ 4 \end{array} \qquad L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} = D - A = \partial_1 \partial_1^T,$$

where

So firing v is subtracting Lv (row/column v from L) from (c_1, \ldots, c_n) .

$\mathsf{Kernel}\ \partial_0$

Did you notice?: Sum of chips stays constant.

*ロ * * @ * * 注 * * 注 *

æ

$\text{Kernel }\partial_0$

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).

Image: A image: A

ヨート

$\text{Kernel }\partial_0$

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial_0 c = 0$, i.e., $c \in \ker \partial_0$.

Image: A image: A

$\text{Kernel }\partial_0$

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial_0 c = 0$, i.e., $c \in \ker \partial_0$.

▶ We can pick c_i , $i \neq r$, arbitrarily, and keep $c \in \ker \partial_0$ by picking c_r appropriately.

イロト イポト イヨト イヨト

$\text{Kernel }\partial_0$

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial_0 c = 0$, i.e., $c \in \ker \partial_0$.

▶ We can pick c_i , $i \neq r$, arbitrarily, and keep $c \in \ker \partial_0$ by picking c_r appropriately.

イロト イポト イヨト イヨト

$\text{Kernel }\partial_0$

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial_0 c = 0$, i.e., $c \in \ker \partial_0$.

▶ We can pick c_i , $i \neq r$, arbitrarily, and keep $c \in \ker \partial_0$ by picking c_r appropriately.

► Consider two configurations (in ker ∂₀) to be equivalent when you can get from one to the other by chip-firing.

(日) (同) (日) (日) (日)

- ► Consider two configurations (in ker ∂₀) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.

- 4 同 6 4 日 6 4 日 6

- ► Consider two configurations (in ker ∂₀) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.
- This equivalence means adding/subtracting integer multiples of Lv_i.

- 4 同 6 4 日 6 4 日 6

- ► Consider two configurations (in ker ∂₀) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.
- This equivalence means adding/subtracting integer multiples of Lv_i.
- ▶ In other words, instead of ker ∂_0 , we look at

 $K(G) := (\ker \partial_0) / (\operatorname{im} L) = (\ker \partial_0) / (\operatorname{im} \partial_1 \partial_1^T)$

the critical group. (It is a graph invariant.)

Reduced Laplacian and spanning trees

Theorem (Biggs '99)

$$K := (\ker \partial_0) / (\operatorname{im} L) \cong \mathbb{Z}^{n-1} / (\operatorname{im} L_r),$$

where L_r denotes reduced Laplacian; remove row and column corresponding to source vertex.

- 4 同 6 4 日 6 4 日 6

Reduced Laplacian and spanning trees

Theorem (Biggs '99)

$$\mathcal{K} := (\ker \partial_0)/(\operatorname{im} \mathcal{L}) \cong \mathbb{Z}^{n-1}/(\operatorname{im} \mathcal{L}_r),$$

where L_r denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary |K(G)| is the number of spanning trees of G.

- 4 同 6 4 日 6 4 日 6

Reduced Laplacian and spanning trees

Theorem (Biggs '99)

$$K := (\ker \partial_0)/(\operatorname{im} L) \cong \mathbb{Z}^{n-1}/(\operatorname{im} L_r),$$

where L_r denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary |K(G)| is the number of spanning trees of G.

Proof.

If M is a full rank t-dimensional matrix, then

```
|(\mathbb{Z}^t)/(\operatorname{im} M)| = \pm \det M
```

Reduced Laplacian and spanning trees

Theorem (Biggs '99)

```
K := (\ker \partial_0)/(\operatorname{im} L) \cong \mathbb{Z}^{n-1}/(\operatorname{im} L_r),
```

where L_r denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary |K(G)| is the number of spanning trees of G.

Proof.

If M is a full rank t-dimensional matrix, then

```
|(\mathbb{Z}^t)/(\operatorname{im} M)| = \pm \det M
```

and $|\det L_r|$ counts spanning trees.

(a)

Example

・ロン ・部 と ・ ヨ と ・ ヨ と …

Example

イロン イロン イヨン イヨン

Example

det $L_r = 8$, and there are 8 spanning trees of this graph

・ 同 ト ・ ヨ ト ・ ヨ ト

Graphs Definition Simplicial complexes Spanning Further ideas Reduced L

Generalize to simplicial complexes

Let Δ be a *d*-dimensional simplicial complex.

$$C_{d}(\Delta;\mathbb{Z}) \xrightarrow{\partial_{d}^{T}}_{\partial_{d}} C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$
$$C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition Simplicial complexes Further ideas

Generalize to simplicial complexes

Let Δ be a *d*-dimensional simplicial complex.

$$C_{d}(\Delta;\mathbb{Z}) \stackrel{\partial_{d}^{T}}{\underset{\partial_{d}}{\hookrightarrow}} C_{d-1}(\Delta;\mathbb{Z}) \stackrel{\partial_{d-1}}{\longrightarrow} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$
$$C_{d-1}(\Delta;\mathbb{Z}) \stackrel{L_{d-1}}{\longrightarrow} C_{d-1}(\Delta;\mathbb{Z}) \stackrel{\partial_{d-1}}{\longrightarrow} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$

Define

$$K(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1})$$

where $L_{d-1} = \partial_d \partial_d^T$ is the (d-1)-dimensional up-down Laplacian.

イロト イポト イヨト イヨト

Graphs Definition Simplicial complexes Further ideas Reduced I

Generalize to simplicial complexes

Let Δ be a *d*-dimensional simplicial complex.

$$C_{d}(\Delta; \mathbb{Z}) \xrightarrow[\partial_{d}]{\overset{\partial_{d}}{\leftarrow}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow[\partial_{d-1}]{\overset{\partial_{d-1}}{\rightarrow}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$

$$C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow[L_{d-1}]{\overset{L_{d-1}}{\rightarrow}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow[\partial_{d-1}]{\overset{\partial_{d-1}}{\rightarrow}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$

Define

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1})$$

where $L_{d-1} = \partial_d \partial_d^T$ is the (d-1)-dimensional up-down Laplacian. Can we compute it with a reduced Laplacian?

(4月) (4日) (4日)

Graphs Definition Simplicial complexes Further ideas Reduced

Generalize to simplicial complexes

Let Δ be a *d*-dimensional simplicial complex.

$$C_{d}(\Delta;\mathbb{Z}) \xrightarrow[\partial_{d}]{} C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow[\partial_{d-1}]{} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$

$$C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow[L_{d-1}]{} C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow[\partial_{d-1}]{} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$

Define

$$K(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1})$$

where $L_{d-1} = \partial_d \partial_d^T$ is the (d-1)-dimensional up-down Laplacian. Can we compute it with a reduced Laplacian? How do we reduce the Laplacian?

(人間) ト く ヨ ト く ヨ ト

Graphs Definition Simplicial complexes Further ideas Reduced

Generalize to simplicial complexes

Let Δ be a *d*-dimensional simplicial complex.

$$C_{d}(\Delta;\mathbb{Z}) \xrightarrow[\partial_{d}]{\partial_{d}} C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow[\partial_{d-1}]{\partial_{d-1}} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$

$$C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow[L_{d-1}]{L_{d-1}} C_{d-1}(\Delta;\mathbb{Z}) \xrightarrow[\partial_{d-1}]{\partial_{d-1}} C_{d-2}(\Delta;\mathbb{Z}) \to \cdots$$

Define

$$K(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1})$$

where $L_{d-1} = \partial_d \partial_d^T$ is the (d-1)-dimensional up-down Laplacian. Can we compute it with a reduced Laplacian? How do we reduce the Laplacian? And what about the trees?

- 4 同 2 4 回 2 4 回 2 4

Graphs Definition Simplicial complexes Further ideas Reduced Laplaciar

Simplicial spanning trees of arbitrary simplicial complexes

- Let Δ be a *d*-dimensional simplicial complex, and assume it is **APC**, acyclic in positive codimension, i.e., $\tilde{H}_j(\Delta; \mathbb{Z})$ is finite for all j < d.
- $\Upsilon \subseteq \Delta$ is a simplicial spanning tree of Δ when:

0.
$$\Upsilon_{(d-1)} = \Delta_{(d-1)}$$
 ("spanning");
1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon; \mathbb{Z}) = 0$ ("acyclic");
3. $f_{d}(\Upsilon) = f_{d}(\Delta) - \tilde{\beta}_{d}(\Delta) + \tilde{\beta}_{d-1}(\Delta)$ ("count").

- If 0. holds, then any two of 1., 2., 3. together imply the third condition.
- When d = 1, coincides with usual definition.

イロト イポト イラト イラト

Graphs Definition Simplicial complexes Further ideas Reduced Laplacia

Example

Bipyramid with equator, $\langle 123, 124, 125, 134, 135, 234, 235 \rangle$

Let's figure out all its simplicial spanning trees.

(日) (同) (三) (三)

Graphs Simplicial complexes Further ideas Complexes Further ideas Complexes Reduced Laplacian

Reduced Laplacians to count spanning trees

Let $\mathcal{T}(\Delta)$ denote the spanning trees of Δ .

• Δ a *d*-dimensional APC complex

- ∂_{Γ} = restriction of ∂_d to faces not in Γ
- ▶ reduced (up-down) (d-1)-dimensional Laplacian $L_{\Gamma} = \partial_{\Gamma} \partial^{T}_{\Gamma}$

Simplicial Matrix-Tree Theorem [DKM '09]

$$h_d = \sum_{\Upsilon \in \mathcal{T}(\Delta)} |\tilde{H}_{d-1}(\Upsilon)|^2 = \frac{|\tilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{|\tilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} \det \underline{L}_{\Gamma}.$$

Note: The $|\tilde{H}_{d-2}|$ terms are often trivial.

(4月) (4日) (4日)

Bipyramid again

$\Gamma=12,13,14,15$ spanning tree of 1-skeleton

(a)

Bipyramid again

$\Gamma = 12, 13, 14, 15$ spanning tree of 1-skeleton

		23	24	25	34	35
	23	3	-1	-1	1	1
	24	-1	2	0	-1	0
L _L =	25	-1	0	2	0	-1
	34	1	-1	0	2	0
	35	1	0	-1	0	2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bipyramid again

$\Gamma = 12, 13, 14, 15$ spanning tree of 1-skeleton

		23	24	25	34	35
,	23	3	-1	-1	1	1
	24	-1	2	0	-1	0
LF —	25	-1	0	2	0	-1
	34	1	-1	0	2	0
	35	1	0	-1	0	2

det $L_{\Gamma} = 15$.

(a)

Definition Spanning trees Reduced Laplacian

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Definition Spanning trees Reduced Laplacian

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

(人間) ト く ヨ ト く ヨ ト

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

 To count spanning trees, remove a (d-1)-dimensional spanning tree from up-down Laplacian.

How to reduce Laplacian?

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

- ► To count spanning trees, remove a (d − 1)-dimensional spanning tree from up-down Laplacian.
- ► To compute critical group, remove a (d - 1)-dimensional spanning tree from up-down Laplacian.

・ロト ・同ト ・ヨト ・ヨト

Spanning trees

Theorem (DKM)

 $\mathcal{K}(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1}) \cong \mathbb{Z}^t / (\operatorname{im} L_{\Gamma})$

where Γ is a torsion-free (d-1)-dimensional spanning tree and $t = \dim \mathbf{L}_{\Gamma}$.

イロト イポト イヨト イヨト

Spanning trees

Theorem (DKM)

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1})/(\operatorname{im} L_{d-1}) \cong \mathbb{Z}^t/(\operatorname{im} L_{\Gamma})$$

where Γ is a torsion-free (d-1)-dimensional spanning tree and $t = \dim \mathbf{L}_{\Gamma}$.

Corollary

 $|K(\Delta)|$ is the torsion-weighted number of d-dimensional spanning trees of Δ .

Proof.

 $|K(\Delta)| = |\mathbb{Z}^t/(\text{im } L_{\Gamma})| = |\det L_{\Gamma}|$, which counts (torsion-weighted) spanning trees.

(日) (同) (三) (三)

What does it look like?

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1}) \subseteq \mathbb{Z}^m$$

<ロ> <部> < 部> < き> < き> <</p>

æ

What does it look like?

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1}) \subseteq \mathbb{Z}^m$$

Put integers on (d – 1)-faces of Δ. Orient faces arbitrarily. d = 2: flow; d = 3: circulation; etc.

(日) (同) (三) (三)

What does it look like?

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1}) \subseteq \mathbb{Z}^m$$

- Put integers on (d 1)-faces of Δ. Orient faces arbitrarily. d = 2: flow; d = 3: circulation; etc.
- conservative flow

(日) (同) (三) (三)

What does it look like?

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1}) \subseteq \mathbb{Z}^m$$

- Put integers on (d 1)-faces of Δ. Orient faces arbitrarily. d = 2: flow; d = 3: circulation; etc.
- conservative flow
 - d = 2: chips do not accumulate or deplete at any vertex;

▲ 同 ▶ → 三 ▶

What does it look like?

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1}) \subseteq \mathbb{Z}^m$$

- Put integers on (d 1)-faces of Δ. Orient faces arbitrarily. d = 2: flow; d = 3: circulation; etc.
- conservative flow
 - d = 2: chips do not accumulate or deplete at any vertex;
 - d = 3: face circulation at each edge adds to zero.

What does it look like?

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1}) \subseteq \mathbb{Z}^m$$

- Put integers on (d 1)-faces of Δ. Orient faces arbitrarily. d = 2: flow; d = 3: circulation; etc.
- conservative flow
 - d = 2: chips do not accumulate or deplete at any vertex;
 - d = 3: face circulation at each edge adds to zero.
- ▶ By theorem, just specify values off the spanning tree.

Firing faces

$$\mathcal{K}(\Delta) := (\ker \partial_{d-1})/(\operatorname{im} L_{d-1}) \subseteq \mathbb{Z}^m$$

Toppling/firing moves the flow to "neighboring" (d-1)-faces, across *d*-faces.

Graphs Simplicial complexes Further ideas nterpretation: Discrete flow Example: Spheres Extension: Critical ring?

Open problem: Critical configurations?

What are the critical configurations?

(日) (同) (三) (三)

Graphs Simplicial complexes Further ideas Interpretation: Discrete flow Example: Spheres Extension: Critical ring?

Open problem: Critical configurations?

- What are the critical configurations?
 - i.e., canonical set of representatives

Image: A image: A

- A 3 N

Open problem: Critical configurations?

- What are the critical configurations?
 - i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.

・ 同・ ・ ヨ・

Open problem: Critical configurations?

- What are the critical configurations?
 - i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
- But this misses the sense of "critical".

・ 同・ ・ ヨ・

Open problem: Critical configurations?

- What are the critical configurations?
 - i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
- But this misses the sense of "critical".
- Main obstacle is idea of what is "positive".

・ 同・ ・ ヨ・

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

 $K(\Delta) := (\ker \partial_{d-1})/(\operatorname{im} L_{d-1})$ Proof.

• $K(\Delta)$ is generated by boundaries of facets ∂F .

▲□ ► ▲ □ ►

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

 $K(\Delta) := (\ker \partial_{d-1}) / (\operatorname{im} L_{d-1})$ Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F .
- ▶ In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G \pmod{\operatorname{im} L}$.

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

 $\mathcal{K}(\Delta) := (\ker \partial_{d-1})/(\operatorname{im} L_{d-1})$ Proof.

- K(Δ) is generated by boundaries of facets ∂F.
- ▶ In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G \pmod{\operatorname{im} L}$.
- So $K(\Delta)$ has a single generator, so it is cyclic.

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_n$.

 $\mathcal{K}(\Delta) := (\ker \partial_{d-1})/(\operatorname{im} L_{d-1})$ Proof.

- K(Δ) is generated by boundaries of facets ∂F.
- ▶ In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G \pmod{\operatorname{im} L}$.
- So $K(\Delta)$ has a single generator, so it is cyclic.
- |K(Δ)| is the number of spanning trees, and there is one tree for every facet (remove that facet for the tree).

Graphs Interpretation: Discret mplicial complexes Example: Spheres Further ideas Extension: Critical rin

Riemann-Roch Theorem for Graphs

Baker-Norine ('07)

Algebraic geometry	Graph theory
Riemann surface	Graph
Divisor	Chip configuration
Linear equivalence (i.e., equivalence mod principal divisors)	Sequence of chip-firing moves
Picard group	Critical group

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

and now simplicial complexes?

Algebraic geometry	Simplicial complexes		
Variety	Simplicial complex		
Algebraic cycle	Simplicial (co)chain		
Rational equivalence (i.e., equiv. mod principal divisors)	Flow redistribution (i.e., equiv. mod Laplacians)		
Chow group	Simplicial critical group		
Chow ring	?????		

In other words, how can we define a multiplication on elements (equivalence classes) of the simplicial critical group?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >