Max flow min cut in higher dimensions

Art Duval¹ Caroline Klivans² Jeremy Martin³

¹University of Texas at El Paso

²Brown University

³University of Kansas

Joint Mathematics Meeting AMS Special Session on Topological Combinatorics San Diego, CA January 12, 2013

伺 ト イ ヨ ト イ ヨ ト

<ロ> <同> <同> < 回> < 回>

э

Definition

Flow on G is an assignment of flow x_e (non-negative number, and direction) to each edge such that:

▶ net flow at each vertex, except S and T, is zero; and

$$|x_e| \le \kappa_e.$$

Value of flow is outflow(S) = inflow(T).

Image: A image: A

Definition

Flow on G is an assignment of flow x_e (non-negative number, and direction) to each edge such that:

• net flow at each vertex, except S and T, is zero; and

$$|x_e| \le \kappa_e.$$

Value of flow is outflow(S) = inflow(T).

What is maximum value of flow on G? How can we be sure?

Definition

Flow on G is an assignment of flow x_e (non-negative number, and direction) to each edge such that:

▶ net flow at each vertex, except S and T, is zero; and

$$|x_e| \le \kappa_e.$$

Value of flow is outflow(S) = inflow(T).

What is maximum value of flow on G? How can we be sure?

Definition

Cut is minimal set of edges whose removal disconnects S from T. Value of cut is $\sum_{e \in \text{cut}} \kappa_e$.

イロト イポト イヨト イヨト

Definition

Cut is minimal set of edges whose removal disconnects S from T. Value of cut is $\sum_{e \in \text{cut}} \kappa_e$. Clearly, value(flow) \leq value(cut), so max flow \leq min cut.

Theorem (Classic max flow min cut)

Max flow = min cut.

Image: A image: A

Graphs Higher dimensions Max flow min cut Boundary matrix ∟inear programming

・ロト ・回ト ・モト ・モト

æ

Definition

Flow on G is an assignment of flow x_e (non-negative number, and direction) to each edge such that:

net flow at each vertex is zero; and

$$|x_e| \le \kappa_e.$$

Value of flow is x_0 .

A⊒ ▶ < 3

Definition

Flow on G is an assignment of flow x_e (non-negative number, and direction) to each edge such that:

net flow at each vertex is zero; and

$$|x_e| \le \kappa_e.$$

Value of flow is x_0 .

Definition

Cut is minimal set of edges, including e_0 , whose removal disconnects G. Value of cut is $\sum_{e \in \text{cut} \setminus e_0} \kappa_e$.

Assign orientation to each edge (flow going "backwards" gets negative value)

$$\mathsf{netflow}(v) = \sum_{v=e^+} x_e - \sum_{v=e^-} x_e = \sum_{v \in e} (-1)^{\varepsilon(e,v)} x_e = (\partial x)_v$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Assign orientation to each edge (flow going "backwards" gets negative value)

$$\mathsf{netflow}(v) = \sum_{v=e^+} x_e - \sum_{v=e^-} x_e = \sum_{v\in e} (-1)^{\varepsilon(e,v)} x_e = (\partial x)_v$$

So net flow condition is $\partial x = 0$.

伺 ト く ヨ ト く ヨ ト

Cuts and coboundary

Assign 1 to every vertex on one side of the cut, 0 to every vertex on the other side.

э

- 4 同 6 4 日 6 4 日 6

Cuts and coboundary

Assign 1 to every vertex on one side of the cut, 0 to every vertex on the other side. Let y_v be value at v. Compute coboundary,

$$\partial^{T} y = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}^{T} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & -1 \end{pmatrix}$$

▲ 同 ▶ → 三 ▶

ヨート

Cuts and coboundary

Assign 1 to every vertex on one side of the cut, 0 to every vertex on the other side. Let y_v be value at v. Compute coboundary,

$$\partial^{T} y = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}^{T} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & -1 \end{pmatrix}$$

Edges in cut are those that have both 0 and 1 endpoints.

Linear programming

Flow is now a linear program

- Find vector x (in edge space)
- $\partial x = 0$ (x is in flow space)
- ▶ $-\kappa_e \leq x_e \leq \kappa_e$ (can omit e_0)
- ▶ max *x*₀

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Linear programming

Flow is now a linear program

- Find vector x (in edge space)
- $\partial x = 0$ (x is in flow space)
- $-\kappa_e \leq x_e \leq \kappa_e$ (can omit e_0)
- ▶ max *x*₀

The dual program is (can easily be reworked to say):

- Find vector y (in vertex space)
- Let $u = \partial^T y$ (in cut space)
- ▶ $u_0 = 1$
- min $\sum_e \kappa_e |u_e|$

- 4 同 2 4 回 2 4 U

3

Linear programming

Flow is now a linear program

- Find vector x (in edge space)
- $\partial x = 0$ (x is in flow space)
- $-\kappa_e \leq x_e \leq \kappa_e$ (can omit e_0)
- ▶ max *x*₀

The dual program is (can easily be reworked to say):

- Find vector y (in vertex space)
- Let $u = \partial^T y$ (in cut space)
- ▶ *u*₀ = 1
- min $\sum_e \kappa_e |u_e|$

Linear programming says the solutions are equal; with some effort we can show the solution to the dual LP is the min cut problem.

・ロト ・同ト ・ヨト ・ヨト

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.

▲ 同 ▶ → 三 ▶

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.

Remark

Any \mathbb{Z} matrix can be the boundary matrix of a cell complex.

・ロト ・同ト ・ヨト ・

Cellular matroids

- Matroid whose elements are columns of boundary matrix
- Dependent sets are the supports of the kernel of the boundary matrix

・ 同 ト ・ ヨ ト ・ ヨ ト

Flow space and circuits

Definition

i-dimensional flow space of cell complex X is

$$\mathsf{Flow}_i(X) = \mathsf{ker}(\partial_i : C_{i-1}(X, \mathbb{R}) \to C_{i-1}(X, \mathbb{R})).$$

э

< 日 > < 同 > < 三 > < 三 >

Flow space and circuits

Definition

i-dimensional flow space of cell complex X is

$$\mathsf{Flow}_i(X) = \mathsf{ker}(\partial_i : C_{i-1}(X, \mathbb{R}) \to C_{i-1}(X, \mathbb{R})).$$

A circuit of X is a minimal set of *i*-faces that support non-0 vector of $Flow_i(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

▲ 同 ▶ → 三 ▶

Flow space and circuits

Definition

i-dimensional flow space of cell complex X is

$$\mathsf{Flow}_i(X) = \mathsf{ker}(\partial_i : C_{i-1}(X, \mathbb{R}) \to C_{i-1}(X, \mathbb{R})).$$

A circuit of X is a minimal set of *i*-faces that support non-0 vector of $Flow_i(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

Example

Bipyramid

◆ 同 ▶ → (目 ▶

Cut space and cocircuits

Definition

i-dimensional cut space of cell complex X is

$$\operatorname{Cut}_i(X) = \operatorname{im}(\partial_i^* : C_{i-1}(X, \mathbb{R}) \to C_i(X, \mathbb{R})).$$

Remark

Cut space is the rowspace of the boundary matrix; cut space and flow space are orthogonal complements.

< 🗇 > < 🖃 >

Cut space and cocircuits

Definition

i-dimensional cut space of cell complex X is

$$\operatorname{Cut}_i(X) = \operatorname{im}(\partial_i^* : C_{i-1}(X, \mathbb{R}) \to C_i(X, \mathbb{R})).$$

A cocircuit of X is a minimal set of *i*-faces that support non-0 vector of $Cut_i(X)$

Remark

Cut space is the rowspace of the boundary matrix; cut space and flow space are orthogonal complements.

Remark

Cocircuits are the cocircuits of cellular matroid

Topological interpretation of cocircuits

Remark

Cocircuits are minimal for increasing (i - 1)-dimensional homology instead of decreasing *i*-dimensional homology

Examples

▲ 同 ▶ → 三 ▶

Max flow in higher dimensions

- Find vector x (in facet space)
- $\partial x = 0$ (x is in flow space)
- $-\kappa_f \leq x_f \leq \kappa_f$ (can omit f_0)
- identify designated facet f_0 ; max f_0

・ 同 ト ・ ヨ ト ・ ヨ ト

Max flow in higher dimensions

- Find vector x (in facet space)
- $\partial x = 0$ (x is in flow space)
- $-\kappa_f \leq x_f \leq \kappa_f$ (can omit f_0)
- identify designated facet f_0 ; max f_0

Find a codimension-1 cycle on the complex, and attach a facet f_0 filling that cycle. We are trying to maximize circulation on that designated facet (around that cycle), while making all circulation balance on each codimension-1 face (ridge).

・ 同 ト ・ ヨ ト ・ ヨ ト

Min cut in higher dimensions

The dual program is (can easily be reworked to say):

- Find vector y (in ridge space)
- Let $u = \partial^T y$ (in cut space)

▶
$$u_0 = 1$$

• min
$$\sum_{p} \kappa_{p} |u_{p}|$$

- 4 同 6 4 日 6 4 日 6

э

Min cut in higher dimensions

The dual program is (can easily be reworked to say):

- Find vector y (in ridge space)
- Let $u = \partial^T y$ (in cut space)
- ► *u*₀ = 1

• min $\sum_{p} \kappa_{p} |u_{p}|$

Linear programming says this min value equals the max flow, and it is (by construction) in cut space. But is the solution u supported on a cocircuit?

- 4 同 6 4 日 6 4 日 6

Min cut in higher dimensions

The dual program is (can easily be reworked to say):

- Find vector y (in ridge space)
- Let $u = \partial^T y$ (in cut space)
- ► *u*₀ = 1

• min $\sum_{p} \kappa_{p} |u_{p}|$

Linear programming says this min value equals the max flow, and it is (by construction) in cut space. But is the solution u supported on a cocircuit?

Theorem (DKM)

The max flow equals the value of some solution to the dual LP whose support is a cocircuit.

イロト イポト イヨト イヨト

Graphs Higher dimensions Graphs Higher dimensions Cell complexes Flow space and cut space Max flow min cut

Summary

Theorem (DKM)

The max flow around a codimension-1 cycle equals the "capacity" of a min cut containing the added face that fills in the cycle.

< 日 > < 同 > < 三 > < 三 >

Graphs Higher dimensions Cell complexes Flow space and cut space Max flow min cut

Summary

Theorem (DKM)

The max flow around a codimension-1 cycle equals the "capacity" of a min cut containing the added face that fills in the cycle. Fine print:

- normalize cut vector by specifying its value is 1 on f₀, the added filling-in facet
- cut vector might not be all 1's and 0's
- capacity of cut is inner product of facet capacities with cut vector

< 日 > < 同 > < 三 > < 三 >

Summary

Theorem (DKM)

The max flow around a codimension-1 cycle equals the "capacity" of a min cut containing the added face that fills in the cycle. Fine print:

- normalize cut vector by specifying its value is 1 on f₀, the added filling-in facet
- cut vector might not be all 1's and 0's
- capacity of cut is inner product of facet capacities with cut vector

Questions:

- Is there an analogue to Ford-Fulkerson? That is, a combinatorial algorithm that would construct the "min cut", without relying on linear programming?
- What happens when we restrict to integers?