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Given a graph G with source S , sink T , and edge capacities κ.

Definition
Flow on G is an assignment of flow xe (non-negative number, and
direction) to each edge such that:

I net flow at each vertex, except S and T , is zero; and

I |xe | ≤ κe .

Value of flow is outflow(S) = inflow(T ).

What is maximum value of flow on G ? How can we be sure?
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Definition
Cut is minimal set of edges whose removal disconnects S from T .
Value of cut is

∑
e∈cut κe .

Clearly, value(flow) ≤ value(cut), so max flow ≤ min cut.

Theorem (Classic max flow min cut)

Max flow = min cut.
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Definition
Cut is minimal set of edges whose removal disconnects S from T .
Value of cut is

∑
e∈cut κe .

Clearly, value(flow) ≤ value(cut), so max flow ≤ min cut.

Theorem (Classic max flow min cut)

Max flow = min cut.
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Definition
Flow on G is an assignment of flow xe (non-negative number, and
direction) to each edge such that:

I net flow at each vertex is zero; and

I |xe | ≤ κe .

Value of flow is x0.

Definition
Cut is minimal set of edges, including e0, whose removal
disconnects G . Value of cut is

∑
e∈cut\e0

κe .

Duval, Klivans, Martin Max flow min cut in higher dimensions



Graphs
Higher dimensions

Max flow min cut
Boundary matrix
Linear programming

Add an extra edge

5

T

2/3

0/1 1/2 1/1 1/2 0/1
S

2/2 2/2

2/2 2/2

3/3

2/33/3

Definition
Flow on G is an assignment of flow xe (non-negative number, and
direction) to each edge such that:

I net flow at each vertex is zero; and

I |xe | ≤ κe .

Value of flow is x0.

Definition
Cut is minimal set of edges, including e0, whose removal
disconnects G . Value of cut is

∑
e∈cut\e0

κe .
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Definition
Flow on G is an assignment of flow xe (non-negative number, and
direction) to each edge such that:

I net flow at each vertex is zero; and

I |xe | ≤ κe .

Value of flow is x0.
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Assign orientation to each edge (flow going “backwards” gets
negative value)

netflow(v) =
∑
v=e+

xe −
∑

v=e−

xe =
∑
v∈e

(−1)ε(e,v)xe = (∂x)v

So net flow condition is ∂x = 0.
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Assign 1 to every vertex on one side of the cut, 0 to every vertex
on the other side.

Let yv be value at v . Compute coboundary,

∂T y =


−1 1 0 0 0
1 0 1 −1 0
0 −1 −1 0 1
0 0 0 1 −1


T 

0
1
0
1

 =
(
1 0 1 0 −1

)
Edges in cut are those that have both 0 and 1 endpoints.
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Flow is now a linear program

I Find vector x (in edge space)

I ∂x = 0 (x is in flow space)

I −κe ≤ xe ≤ κe (can omit e0)

I max x0

The dual program is (can easily be reworked to say):

I Find vector y (in vertex space)

I Let u = ∂T y (in cut space)

I u0 = 1

I min
∑

e κe |ue |
Linear programming says the solutions are equal; with some effort
we can show the solution to the dual LP is the min cut problem.
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Definition
A cell complex X is a finite CW-complex (i.e., collection of cells of
different dimensions), with say n facets and p ridges, and a p × n
cellular boundary matrix ∂ ∈ Zp×n.

Example

1

5

2

4

3
2 3 5 7

2 3 0 0
0 0 5 7

Remark
Any Z matrix can be the boundary matrix of a cell complex.
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Cellular matroids

I Matroid whose elements are columns of boundary matrix

I Dependent sets are the supports of the kernel of the boundary
matrix

Example

1

5

2

4

3
2 3 5 7

2 3 0 0
0 0 5 7
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Flow space and circuits

Definition
i-dimensional flow space of cell complex X is

Flowi (X ) = ker(∂i : Ci−1(X ,R)→ Ci−1(X ,R)).

A circuit of X is a minimal set of i-faces that support non-0 vector
of Flowi (X )

Remark
Circuits are the circuits (minimal dependent sets) of cellular
matroid.

Example

Bipyramid
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Cut space and cocircuits

Definition
i-dimensional cut space of cell complex X is

Cuti (X ) = im(∂∗i : Ci−1(X ,R)→ Ci (X ,R)).

A cocircuit of X is a minimal set of i-faces that support non-0
vector of Cuti (X )

Remark
Cut space is the rowspace of the boundary matrix; cut space and
flow space are orthogonal complements.

Remark
Cocircuits are the cocircuits of cellular matroid
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i-dimensional cut space of cell complex X is
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Topological interpretation of cocircuits

Remark
Cocircuits are minimal for increasing (i − 1)-dimensional homology
instead of decreasing i-dimensional homology

Examples

1

5

2

4

3
2 3 5 7
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Max flow in higher dimensions

I Find vector x (in facet space)

I ∂x = 0 (x is in flow space)

I −κf ≤ xf ≤ κf (can omit f0)

I identify designated facet f0; max f0

Find a codimension-1 cycle on the complex, and attach a facet f0

filling that cycle. We are trying to maximize circulation on that
designated facet (around that cycle), while making all circulation
balance on each codimension-1 face (ridge).
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Min cut in higher dimensions

The dual program is (can easily be reworked to say):

I Find vector y (in ridge space)

I Let u = ∂T y (in cut space)

I u0 = 1

I min
∑

p κp|up|

Linear programming says this min value equals the max flow, and
it is (by construction) in cut space. But is the solution u supported
on a cocircuit?

Theorem (DKM)

The max flow equals the value of some solution to the dual LP
whose support is a cocircuit.
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Summary

Theorem (DKM)

The max flow around a codimension-1 cycle equals the “capacity”
of a min cut containing the added face that fills in the cycle.

Fine print:

I normalize cut vector by specifying its value is 1 on f0, the
added filling-in facet

I cut vector might not be all 1’s and 0’s

I capacity of cut is inner product of facet capacities with cut
vector

Questions:

I Is there an analogue to Ford-Fulkerson? That is, a
combinatorial algorithm that would construct the “min cut”,
without relying on linear programming?

I What happens when we restrict to integers?
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