Max flow min cut in higher dimensions

Art Duval ${ }^{1} \quad$ Caroline Klivans ${ }^{2}$ Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ Brown University
${ }^{3}$ University of Kansas

Joint Mathematics Meeting
AMS Special Session on Topological Combinatorics San Diego, CA
January 12, 2013

Max flow

Given a graph G with source S, sink T, and edge capacities κ.

Max flow

Given a graph G with source $S, \operatorname{sink} T$, and edge capacities κ.

Definition

Flow on G is an assignment of flow x_{e} (non-negative number, and direction) to each edge such that:

- net flow at each vertex, except S and T, is zero; and
- $\left|x_{e}\right| \leq \kappa_{e}$.

Value of flow is outflow $(S)=\operatorname{inflow}(T)$.

Max flow

Given a graph G with source $S, \operatorname{sink} T$, and edge capacities κ.

Definition

Flow on G is an assignment of flow x_{e} (non-negative number, and direction) to each edge such that:

- net flow at each vertex, except S and T, is zero; and
- $\left|x_{e}\right| \leq \kappa_{e}$.

Value of flow is outflow $(S)=\operatorname{inflow}(T)$.
What is maximum value of flow on G ? How can we be sure?

Max flow

Given a graph G with source S, sink T, and edge capacities κ.

Definition

Flow on G is an assignment of flow x_{e} (non-negative number, and direction) to each edge such that:

- net flow at each vertex, except S and T, is zero; and
- $\left|x_{e}\right| \leq \kappa_{e}$.

Value of flow is outflow $(S)=\operatorname{inflow}(T)$.
What is maximum value of flow on G ? How can we be sure?

Min cut

Definition
Cut is minimal set of edges whose removal disconnects S from T. Value of cut is $\sum_{e \in c u t} \kappa_{e}$.

Min cut

Definition
Cut is minimal set of edges whose removal disconnects S from T.
Value of cut is $\sum_{e \in \mathrm{cut}} \kappa_{e}$.
Clearly, value(flow) \leq value(cut), so max flow $\leq \min$ cut.
Theorem (Classic max flow min cut)
Max flow $=$ min cut.

Graphs

Add an extra edge

Add an extra edge

Definition

Flow on G is an assignment of flow x_{e} (non-negative number, and direction) to each edge such that:

- net flow at each vertex is zero; and
- $\left|x_{e}\right| \leq \kappa_{e}$.

Value of flow is x_{0}.

Add an extra edge

Definition

Flow on G is an assignment of flow x_{e} (non-negative number, and direction) to each edge such that:

- net flow at each vertex is zero; and
- $\left|x_{e}\right| \leq \kappa_{e}$.

Value of flow is x_{0}.
Definition
Cut is minimal set of edges, including e_{0}, whose removal disconnects G. Value of cut is $\sum_{e \in c u t \mid e_{0}} \kappa_{e}$.

Flows and boundary

$$
\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & -1 & 0 \\
0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
2 \\
4 \\
3 \\
3 \\
2
\end{array}\right)=-4-3+2=-5
$$

Assign orientation to each edge (flow going "backwards" gets negative value)

$$
\text { netflow }(v)=\sum_{v=e^{+}} x_{e}-\sum_{v=e^{-}} x_{e}=\sum_{v \in e}(-1)^{\varepsilon(e, v)^{\prime}} x_{e}=(\partial x)_{v}
$$

Flows and boundary

$$
\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & -1 & 0 \\
0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
2 \\
2 \\
3 \\
5 \\
5
\end{array}\right)=-2-3+5=0
$$

Assign orientation to each edge (flow going "backwards" gets negative value)

$$
\operatorname{netflow}(v)=\sum_{v=e^{+}} x_{e}-\sum_{v=e^{-}} x_{e}=\sum_{v \in e}(-1)^{\varepsilon(e, v)^{\prime}} x_{e}=(\partial x)_{v}
$$

So net flow condition is $\partial x=0$.

Cuts and coboundary

Assign 1 to every vertex on one side of the cut, 0 to every vertex on the other side.

Cuts and coboundary

Assign 1 to every vertex on one side of the cut, 0 to every vertex on the other side. Let y_{v} be value at v. Compute coboundary,
$\partial^{T} y=\left(\begin{array}{ccccc}-1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right)^{T}\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{lllll}1 & 0 & 1 & 0 & -1\end{array}\right)$

Cuts and coboundary

Assign 1 to every vertex on one side of the cut, 0 to every vertex on the other side. Let y_{v} be value at v. Compute coboundary,
$\partial^{T} y=\left(\begin{array}{ccccc}-1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right)^{T}\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{lllll}1 & 0 & 1 & 0 & -1\end{array}\right)$
Edges in cut are those that have both 0 and 1 endpoints.

Linear programming

Flow is now a linear program

- Find vector x (in edge space)
- $\partial x=0$ (x is in flow space)
- $-\kappa_{e} \leq x_{e} \leq \kappa_{e}$ (can omit e_{0})
- $\max x_{0}$

Linear programming

Flow is now a linear program

- Find vector x (in edge space)
- $\partial x=0$ (x is in flow space)
- $-\kappa_{e} \leq x_{e} \leq \kappa_{e}$ (can omit e_{0})
- $\max x_{0}$

The dual program is (can easily be reworked to say):

- Find vector y (in vertex space)
- Let $u=\partial^{T} y$ (in cut space)
- $u_{0}=1$
$-\min \sum_{e} \kappa_{e}\left|u_{e}\right|$

Linear programming

Flow is now a linear program

- Find vector x (in edge space)
- $\partial x=0$ (x is in flow space)
- $-\kappa_{e} \leq x_{e} \leq \kappa_{e}$ (can omit e_{0})
- max x_{0}

The dual program is (can easily be reworked to say):

- Find vector y (in vertex space)
- Let $u=\partial^{T} y$ (in cut space)
- $u_{0}=1$
$-\min \sum_{e} \kappa_{e}\left|u_{e}\right|$
Linear programming says the solutions are equal; with some effort we can show the solution to the dual LP is the min cut problem.

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.

Example

Cell complexes

Definition

A cell complex X is a finite CW-complex (i.e., collection of cells of different dimensions), with say n facets and p ridges, and a $p \times n$ cellular boundary matrix $\partial \in \mathbb{Z}^{p \times n}$.

Example

Remark
Any \mathbb{Z} matrix can be the boundary matrix of a cell complex.

Cellular matroids

- Matroid whose elements are columns of boundary matrix
- Dependent sets are the supports of the kernel of the boundary matrix

Example

Flow space and circuits

Definition
i-dimensional flow space of cell complex X is

$$
\operatorname{Flow}_{i}(X)=\operatorname{ker}\left(\partial_{i}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i-1}(X, \mathbb{R})\right)
$$

Flow space and circuits

Definition
i-dimensional flow space of cell complex X is

$$
\operatorname{Flow}_{i}(X)=\operatorname{ker}\left(\partial_{i}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i-1}(X, \mathbb{R})\right)
$$

A circuit of X is a minimal set of i-faces that support non- 0 vector of Flow $_{i}(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

Flow space and circuits

Definition
i-dimensional flow space of cell complex X is

$$
\operatorname{Flow}_{i}(X)=\operatorname{ker}\left(\partial_{i}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i-1}(X, \mathbb{R})\right)
$$

A circuit of X is a minimal set of i-faces that support non- 0 vector of Flow $_{i}(X)$

Remark

Circuits are the circuits (minimal dependent sets) of cellular matroid.

Example
Bipyramid

Cut space and cocircuits

Definition

i-dimensional cut space of cell complex X is

$$
\operatorname{Cut}_{i}(X)=\operatorname{im}\left(\partial_{i}^{*}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i}(X, \mathbb{R})\right)
$$

Remark

Cut space is the rowspace of the boundary matrix; cut space and flow space are orthogonal complements.

Cut space and cocircuits

Definition

i-dimensional cut space of cell complex X is

$$
\operatorname{Cut}_{i}(X)=\operatorname{im}\left(\partial_{i}^{*}: C_{i-1}(X, \mathbb{R}) \rightarrow C_{i}(X, \mathbb{R})\right)
$$

A cocircuit of X is a minimal set of i-faces that support non-0 vector of $\mathrm{Cut}_{i}(X)$

Remark

Cut space is the rowspace of the boundary matrix; cut space and flow space are orthogonal complements.

Remark
Cocircuits are the cocircuits of cellular matroid

Topological interpretation of cocircuits

Remark

Cocircuits are minimal for increasing ($i-1$)-dimensional homology instead of decreasing i-dimensional homology

Examples

Max flow in higher dimensions

- Find vector x (in facet space)
- $\partial x=0$ (x is in flow space)
- $-\kappa_{f} \leq x_{f} \leq \kappa_{f}$ (can omit f_{0})
- identify designated facet $f_{0} ; \max f_{0}$

Max flow in higher dimensions

- Find vector x (in facet space)
- $\partial x=0$ (x is in flow space)
- $-\kappa_{f} \leq x_{f} \leq \kappa_{f}$ (can omit f_{0})
- identify designated facet $f_{0} ; \max f_{0}$

Find a codimension-1 cycle on the complex, and attach a facet f_{0} filling that cycle. We are trying to maximize circulation on that designated facet (around that cycle), while making all circulation balance on each codimension-1 face (ridge).

Min cut in higher dimensions

The dual program is (can easily be reworked to say):

- Find vector y (in ridge space)
- Let $u=\partial^{T} y$ (in cut space)
- $u_{0}=1$
$-\min \sum_{p} \kappa_{p}\left|u_{p}\right|$

Min cut in higher dimensions

The dual program is (can easily be reworked to say):

- Find vector y (in ridge space)
- Let $u=\partial^{T} y$ (in cut space)
- $u_{0}=1$
$-\min \sum_{p} \kappa_{p}\left|u_{p}\right|$
Linear programming says this min value equals the max flow, and it is (by construction) in cut space. But is the solution u supported on a cocircuit?

Min cut in higher dimensions

The dual program is (can easily be reworked to say):

- Find vector y (in ridge space)
- Let $u=\partial^{T} y$ (in cut space)
- $u_{0}=1$
$-\min \sum_{p} \kappa_{p}\left|u_{p}\right|$
Linear programming says this min value equals the max flow, and it is (by construction) in cut space. But is the solution u supported on a cocircuit?

Theorem (DKM)

The max flow equals the value of some solution to the dual LP whose support is a cocircuit.

Summary

Theorem (DKM)
The max flow around a codimension-1 cycle equals the "capacity" of a min cut containing the added face that fills in the cycle.

Summary

Theorem (DKM)
The max flow around a codimension-1 cycle equals the "capacity" of a min cut containing the added face that fills in the cycle.
Fine print:

- normalize cut vector by specifying its value is 1 on f_{0}, the added filling-in facet
- cut vector might not be all 1's and 0's
- capacity of cut is inner product of facet capacities with cut vector

Summary

Theorem (DKM)
The max flow around a codimension-1 cycle equals the "capacity" of a min cut containing the added face that fills in the cycle.
Fine print:

- normalize cut vector by specifying its value is 1 on f_{0}, the added filling-in facet
- cut vector might not be all 1's and 0's
- capacity of cut is inner product of facet capacities with cut vector
Questions:
- Is there an analogue to Ford-Fulkerson? That is, a combinatorial algorithm that would construct the "min cut", without relying on linear programming?
- What happens when we restrict to integers?

