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GRAPHS
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∂1 =

a b c d e f g h
1 1 1 1 1 1 0 0 0
2 −1 0 0 0 0 1 1 1
3 0 −1 0 0 0 −1 0 0
4 0 0 −1 0 0 0 −1 0
5 0 0 0 −1 0 0 0 −1
6 0 0 0 0 −1 0 0 0

∂1∂
T
1 =

1 2 3 4 5 6
1 5 −1 −1 −1 −1 −1
2 −1 4 −1 −1 −1 0
3 −1 −1 2 0 0 0
4 −1 −1 0 2 0 0
5 −1 −1 0 0 2 0
6 −1 0 0 0 0 1

= D −A

2



EIGENVALUES
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∂1∂
T
1 =

1 . . . 6
1
...
6

e’vals 652210

∂T1 ∂1 =

a . . . h
a
...
h

e’vals 65221000

∂T1 ∂1(∂T1 x) = ∂T1 (∂1∂
T
1 x) = ∂T1 (λx) = λ(∂T1 x)
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SIMPLICIAL COMPLEXES
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∂T2 =
a b c d e f g h

P 1 −1 0 0 0 1 0 0
Q 1 0 −1 0 0 0 1 0

∂T2 ∂2 =
P Q

P 3 1
Q 1 3

e’vals 42

∂2∂
T
2 =

a . . . h
a
...
h

e’vals 42000000
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LAPLACIAN

Defn: (1-dimensional) Laplacian

L1 = ∂T1 ∂1 + ∂2∂
T
2 .

But now note ∂1∂2 = 0! (Because, for in-
stance,

∂1(∂2(123)) = ∂1(12− 13 + 23)

= (1− 2)− (1− 3) + (2− 3) = 0.)

So

(∂T1 ∂1)(∂2∂
T
2 ) = (∂2∂

T
2 )(∂T1 ∂1) = 0

and so the non-zero eigenvectors of ∂T1 ∂1 are 0-
eigenvectors of ∂2∂

T
2 and vice versa. (Because

(∂2∂
T
2 )x = (∂2∂

T
2 )(∂T1 ∂1x/λ) = 0.)

And then the multiset of eigenvalues of L1 is
just the multiset union of the eigenvalues of
∂T1 ∂1 and ∂2∂

T
2 .

So, in example, e’vals of L1 are 65221 42 0
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APPLICATIONS
(eigenvalues of graphs)

If graph is “grid graph,” then Lx = λx is dis-
crete version of (continuous) wave equation,
using usual (continuous) Laplace operator (eigen-
values are notes of drum).

rankL = n− (#components).
So if graph is connected, then only one 0 eigen-
value (eigenvector is all 1’s vector). In fact,
second smallest eigenvalue is “algebraic con-
nectivity,” which is the right measure of con-
nectivity sometimes.
Also, number of 0 eigenvalues counts number
of cycles (actually, dimension of vector space
of cycles); this generalizes to higher dimen-
sions.

In chemical applications, eigenvalues correlate
with physical properties (sometimes better than
more widely used adjacency matrix).
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SHIFTED COMPLEXES

If F is a face of a shifted complex, then any

new face you get by replacing a bigger vertex

in F by a smaller vertex must also be in the

complex.
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For example, because 25 is an edge, so is 13,

14, 15, 23, 24. And because 124 is a triangle,

so is 123.

Note that this is not a total order; for instance

25 is incomparable to 16
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MATROID COMPLEXES

Easiest way is to look at example, graphic ma-

troid.
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Faces of (graphic) matroid complex are all sets

of edges containing no cycles. (Note: vertices

of complex are edges of original graph!)

1,2,3,4,5,6

12,13,. . . ,56

123,124,. . . ,356, [not 456]

1235, 1236, 1245, 1246, 1256, 1345, 1346,

1356, 2345, 2346, 2356
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THEOREMS

(Kook-Reiner-Stanton ’00) eigenvalues of ma-

troid complexes are integers (nice formula)

(D-Reiner ’02) eigenvalues of shifted complexes

are integers (beautiful formula)

(D preprint ’03) eigenvalues of shifted com-

plexes and matroid complexes satisfy the same

recursion (deletion; contraction; error term =

deletion mod contraction).
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