The Critical group of a simplicial complex

Art Duval¹ Caroline Klivans² Jeremy Martin³

¹University of Texas at El Paso

²University of Chicago

 $^3\mbox{University of Kansas}$

AMS Central Section Meeting
Special Session on Algebraic and Topological Combinatorics
University of Notre Dame
November 7, 2010

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .

Toppling If $c_i \ge d_i$, then v_i may fire by sending one chip to each of its neighbors.

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Abstraction Graph G with vertices v_1, \ldots, v_n . Degree of v_i is d_i . Place $c_i \in \mathbb{Z}$ chips (grains of sand) on v_i .

Toppling If $c_i \ge d_i$, then v_i may fire by sending one chip to each of its neighbors.

▶ To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r .

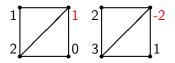
- ▶ To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r .
- \triangleright Put another way: c_r can be any value.

- ▶ To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r .
- ▶ Put another way: c_r can be any value.
- ▶ We might think $c_r \le 0$, and $c_i \ge 0$ when $i \ne r$, or that v_r can fire even when $c_r \le d_r$.

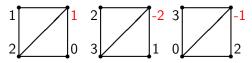
- ▶ To keep things going, pick one vertex v_r to be a source vertex. We can always add chips to v_r .
- ▶ Put another way: c_r can be any value.
- ▶ We might think $c_r \le 0$, and $c_i \ge 0$ when $i \ne r$, or that v_r can fire even when $c_r \le d_r$.

► A configuration is stable when no vertex (except the source vertex) can fire.

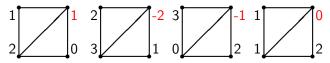
- ➤ A configuration is stable when no vertex (except the source vertex) can fire.
- ▶ A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.



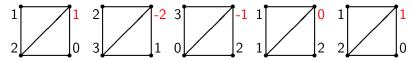
- ➤ A configuration is stable when no vertex (except the source vertex) can fire.
- ▶ A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- ▶ A configuration is critical when it is stable and recurrent.



- ➤ A configuration is stable when no vertex (except the source vertex) can fire.
- ▶ A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- ▶ A configuration is critical when it is stable and recurrent.



- ► A configuration is stable when no vertex (except the source vertex) can fire.
- ▶ A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- ▶ A configuration is critical when it is stable and recurrent.



Fact: Every configuration topples to a unique critical configuration.

Let's make a matrix of how chips move when each vertex fires:

Let's make a matrix of how chips move when each vertex fires:

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} = D - A,$$

Let's make a matrix of how chips move when each vertex fires:

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} = D - A,$$

which is the Laplacian matrix

$$L = D - A = \partial \partial^T$$

where ∂ is the boundary (or incidence) matrix.

Let's make a matrix of how chips move when each vertex fires:

$$\begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix} = D - A,$$

which is the Laplacian matrix

$$L = D - A = \partial \partial^T$$

where ∂ is the boundary (or incidence) matrix. So firing v is subtracting Lv (row/column v from L) from (c_1, \ldots, c_n) .

▶ Did you notice?: Sum of chips stays constant.

- ▶ Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).

- ▶ Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- ▶ So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial c = 0$, i.e., $c \in \ker \partial$.

Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- ► So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial c = 0$, i.e., $c \in \ker \partial$.

▶ We can pick c_i , $i \neq r$, arbitrarily, and keep $c \in \ker \partial$ by picking c_r appropriately.

Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- ► So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial c = 0$, i.e., $c \in \ker \partial$.

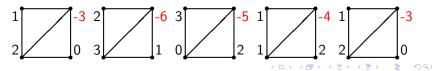
▶ We can pick c_i , $i \neq r$, arbitrarily, and keep $c \in \ker \partial$ by picking c_r appropriately.

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- ► So we may as well insist that

$$\sum_i c_i = 0.$$

In other words, $\partial c = 0$, i.e., $c \in \ker \partial$.

▶ We can pick c_i , $i \neq r$, arbitrarily, and keep $c \in \ker \partial$ by picking c_r appropriately.



▶ Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.

- ▶ Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.

- ▶ Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.
- ► This equivalence means adding/subtracting integer multiples of *Lv_i*.

- ▶ Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.
- ➤ This equivalence means adding/subtracting integer multiples of Lv_i.
- ▶ In other words, instead of ker ∂ , we look at

$$K(G) := \ker \partial / \operatorname{im} L$$

the critical group. (It is a graph invariant.)

Theorem (Biggs '99)

$$K := (\ker \partial)/(\operatorname{im} L) \cong \mathbb{Z}^{n-1}/L_r,$$

where L_r denotes reduced Laplacian; remove row and column corresponding to source vertex.

Theorem (Biggs '99)

$$K := (\ker \partial)/(\operatorname{im} L) \cong \mathbb{Z}^{n-1}/L_r,$$

where L_r denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary

|K(G)| is the number of spanning trees of G.

Theorem (Biggs '99)

$$K := (\ker \partial)/(\operatorname{im} L) \cong \mathbb{Z}^{n-1}/L_r,$$

where L_r denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary

|K(G)| is the number of spanning trees of G.

Proof.

If M is a full rank r-dimensional matrix, then

$$|(\mathbb{Z}^r)/(\operatorname{im} M)| = \pm \det M$$

Theorem (Biggs '99)

$$K := (\ker \partial)/(\operatorname{im} L) \cong \mathbb{Z}^{n-1}/L_r,$$

where L_r denotes reduced Laplacian; remove row and column corresponding to source vertex.

Corollary

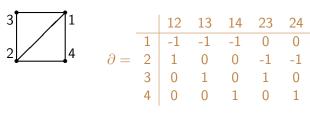
|K(G)| is the number of spanning trees of G.

Proof.

If M is a full rank r-dimensional matrix, then

$$|(\mathbb{Z}^r)/(\operatorname{im} M)| = \pm \det M$$

and $|\det L_r|$ counts spanning trees.



$$L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix}$$

$$L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{pmatrix}$$

 $\det L_r = 8$, and there are 8 spanning trees of this graph

Let Δ be a *d*-dimensional simplicial complex.

$$C_d(\Delta;\mathbb{Z}) \overset{\partial_d^*}{\underset{\partial_d}{\longleftrightarrow}} C_{d-1}(\Delta;\mathbb{Z}) \overset{\partial_{d-1}}{\longrightarrow} C_{d-2}(\Delta;\mathbb{Z}) \longrightarrow \cdots$$

$$C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$

Let Δ be a *d*-dimensional simplicial complex.

$$C_d(\Delta;\mathbb{Z}) \overset{\partial_d^*}{\underset{\partial_d}{\longleftrightarrow}} C_{d-1}(\Delta;\mathbb{Z}) \overset{\partial_{d-1}}{\longrightarrow} C_{d-2}(\Delta;\mathbb{Z}) \longrightarrow \cdots$$

$$C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$

Define

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1}$$

where $L_{d-1} = \partial_d \partial_d^*$ is the (d-1)-dimensional up-down Laplacian.

Let Δ be a *d*-dimensional simplicial complex.

$$C_d(\Delta;\mathbb{Z}) \overset{\partial_d^*}{\underset{\partial_d}{\longleftrightarrow}} C_{d-1}(\Delta;\mathbb{Z}) \overset{\partial_{d-1}}{\longrightarrow} C_{d-2}(\Delta;\mathbb{Z}) \longrightarrow \cdots$$

$$C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$

Define

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1}$$

where $L_{d-1}=\partial_d\partial_d^*$ is the (d-1)-dimensional up-down Laplacian. Can we compute it with a reduced Laplacian?

Let Δ be a *d*-dimensional simplicial complex.

$$C_d(\Delta; \mathbb{Z}) \stackrel{\partial_d^*}{\underset{\partial_d}{\longleftrightarrow}} C_{d-1}(\Delta; \mathbb{Z}) \stackrel{\partial_{d-1}}{\longrightarrow} C_{d-2}(\Delta; \mathbb{Z}) \longrightarrow \cdots$$

$$C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$

Define

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1}$$

where $L_{d-1}=\partial_d\partial_d^*$ is the (d-1)-dimensional up-down Laplacian. Can we compute it with a reduced Laplacian? How do we reduce the Laplacian?

Let Δ be a *d*-dimensional simplicial complex.

$$C_d(\Delta;\mathbb{Z}) \overset{\partial_d^*}{\underset{\partial_d}{\longleftrightarrow}} C_{d-1}(\Delta;\mathbb{Z}) \overset{\partial_{d-1}}{\longrightarrow} C_{d-2}(\Delta;\mathbb{Z}) \longrightarrow \cdots$$

$$C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta; \mathbb{Z}) \to \cdots$$

Define

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1}$$

where $L_{d-1}=\partial_d\partial_d^*$ is the (d-1)-dimensional up-down Laplacian. Can we compute it with a reduced Laplacian? How do we reduce the Laplacian? And what about the trees?

Simplicial spanning trees of arbitrary simplicial complexes

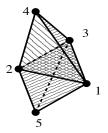
Let Δ be a *d*-dimensional simplicial complex.

 $\Upsilon \subseteq \Delta$ is a **simplicial spanning tree** of Δ when:

- 0. $\Upsilon_{(d-1)} = \Delta_{(d-1)}$ ("spanning");
- 1. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group ("connected");
- 2. $\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0$ ("acyclic");
- 3. $f_d(\Upsilon) = f_d(\Delta) \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta)$ ("count").
- ▶ If 0. holds, then any two of 1., 2., 3. together imply the third condition.
- ▶ When d = 1, coincides with usual definition.

Example

Bipyramid with equator, $\langle 123, 124, 125, 134, 135, 234, 235 \rangle$



Let's figure out all its simplicial spanning trees.

Acyclic in Positive Codimension (APC)

- ▶ Denote by $\mathscr{T}(\Delta)$ the set of simplicial spanning trees of Δ .
- ▶ **Proposition** $\mathscr{T}(\Delta) \neq \emptyset$ iff Δ is **APC**, *i.e.* (equivalently)
 - homology type of wedge of spheres;
 - $\tilde{H}_j(\Delta; \mathbb{Z})$ is finite for all $j < \dim \Delta$.
- Many interesting complexes are APC.

Simplicial Matrix-Tree Theorem

- $ightharpoonup \Delta$ a d-dimensional APC complex
- ▶ $\Gamma \in \mathscr{T}(\Delta_{(d-1)})$
- $ightharpoonup \partial_{\Gamma} = \text{restriction of } \partial_{d} \text{ to faces not in } \Gamma$
- lacktriangle reduced (up-down) (d-1)-dimensional Laplacian $L_\Gamma = \partial_{\Gamma} \partial_{\Gamma}^*$

Theorem [DKM '09]

$$h_d = \sum_{\Upsilon \in \mathscr{T}(\Delta)} |\tilde{H}_{d-1}(\Upsilon)|^2 = \frac{|\tilde{H}_{d-2}(\Delta;\mathbb{Z})|^2}{|\tilde{H}_{d-2}(\Gamma;\mathbb{Z})|^2} \det L_{\Gamma}.$$

Note: The $|\tilde{H}_{d-2}|$ terms are often trivial.

Bipyramid again

 $\Gamma=12,13,14,15$ spanning tree of 1-skeleton

Bipyramid again

 $\Gamma = 12, 13, 14, 15$ spanning tree of 1-skeleton

Bipyramid again

 $\Gamma = 12, 13, 14, 15$ spanning tree of 1-skeleton

 $\det L_{\Gamma} = 15.$

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

▶ To count spanning trees, remove a (d-1)-dimensional spanning tree from up-down Laplacian.

Graphs To count spanning trees, and compute critical group, remove a vertex. (Source vertex of sandpiles.)

Simplicial complexes

- ▶ To count spanning trees, remove a (d-1)-dimensional spanning tree from up-down Laplacian.
- ▶ To compute critical group, remove a (d-1)-dimensional spanning tree from up-down Laplacian.

Spanning trees

Theorem (DKM)

$$K(\Delta) := (\ker \partial_{d-1})/(\operatorname{im} L_{d-1}) \cong \mathbb{Z}^r/L_{\Gamma}$$

where Γ is a torsion-free (d-1)-dimensional spanning tree and $r=\dim L_{\Gamma}$.

Spanning trees

Theorem (DKM)

$$K(\Delta) := (\ker \partial_{d-1})/(\operatorname{im} L_{d-1}) \cong \mathbb{Z}^r/L_{\Gamma}$$

where Γ is a torsion-free (d-1)-dimensional spanning tree and $r=\dim L_{\Gamma}$.

Corollary

 $|K(\Delta)|$ is the torsion-weighted number of d-dimensional spanning trees of Δ .

$$\mathcal{K}(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

Put integers on (d-1)-faces of Δ . Orient faces arbitrarily. d=2: flow; d=3: circulation; etc.

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

- Put integers on (d-1)-faces of Δ . Orient faces arbitrarily. d=2: flow; d=3: circulation; etc.
- conservative flow

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

- Put integers on (d-1)-faces of Δ . Orient faces arbitrarily. d=2: flow; d=3: circulation; etc.
- conservative flow
 - ightharpoonup d = 2: chips do not accumulate or deplete at any vertex;

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

- Put integers on (d-1)-faces of Δ . Orient faces arbitrarily. d=2: flow; d=3: circulation; etc.
- conservative flow
 - ightharpoonup d = 2: chips do not accumulate or deplete at any vertex;
 - ightharpoonup d = 3: face circulation at each edge adds to zero.

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

- Put integers on (d-1)-faces of Δ . Orient faces arbitrarily. d=2: flow; d=3: circulation; etc.
- conservative flow
 - ightharpoonup d = 2: chips do not accumulate or deplete at any vertex;
 - ightharpoonup d = 3: face circulation at each edge adds to zero.
- ▶ By theorem, just specify values off the spanning tree.

Firing faces

$$K(\Delta) := \ker \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^m$$

Toppling/firing moves the flow to "neighboring" (d-1)-faces, across d-faces.

What are the critical configurations?

- What are the critical configurations?
 - ▶ i.e., canonical set of representatives

- ▶ What are the critical configurations?
 - ▶ i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.

- What are the critical configurations?
 - ▶ i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
- But this misses the sense of "critical".

- What are the critical configurations?
 - ▶ i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
- But this misses the sense of "critical".
- Main obstacle is idea of what is "positive".