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Spanning trees of Kn

Theorem (Cayley)

Kn has nn−2 spanning trees.

T ⊆ E (Kn) is a spanning tree of Kn when:

0. spanning: T contains all vertices;

1. connected (H̃0(T ) = 0)

2. no cycles (H̃1(T ) = 0)

3. correct count: |T | = n − 1

If 0. holds, then any two of 1., 2., 3. together imply the third
condition.
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Example: K4

I 4 trees like: T =

r r
rr��

�
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I 12 trees like: T =

r r
rr
1

2

3

4

Total is 16 = 42.
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Laplacian

Definition The

reduced

Laplacian matrix of graph G , denoted by
L

r

(G ).

Defn 1: L(G ) = D(G )− A(G )

D(G ) = diag(deg v1, . . . , deg vn)

A(G ) = adjacency matrix

Defn 2: L(G ) = ∂(G )∂(G )T

∂(G ) = incidence matrix (boundary matrix)

“Reduced”: remove rows/columns corresponding to any one vertex
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Example

r r
rr��

�
� 1

2

3

4 ∂ =

12 13 14 23 24

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2


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Matrix-Tree Theorems

Version I Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then G
has

λ1λ2 · · ·λn−1

n

spanning trees.
Version II G has | det Lr (G )| spanning trees
Proof [Version II]

det Lr (G ) = det ∂r (G )∂r (G )T =
∑
T

(det ∂r (T ))2

=
∑
T

(±1)2

by Binet-Cauchy
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Example: Kn

L(Kn) = nI − J (n × n);

Lr (Kn) = nI − J (n − 1× n − 1)

Version I: Eigenvalues of L are n − n (multiplicity 1), n − 0
(multiplicity n − 1), so

nn−1

n
= nn−2

Version II:

det Lr =
∏

eigenvalues

= (n − 0)(n−1)−1(n − (n − 1))

= nn−2
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Complete skeleta of simplicial complexes

Simplicial complex ∆ ⊆ 2V ;
F ⊆ G ∈ ∆⇒ F ∈ ∆.

Complete skeleton The d-dimensional complete complex on n
vertices, i.e.,

Kd
n = {F ⊆ V : |F | ≤ d + 1}

(so Kn = K 1
n ).
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Simplicial spanning trees of K d
n [Kalai, ’83]

Υ ⊆ Kd
n is a simplicial spanning tree of Kd

n when:

0. Υ(d−1) = Kd−1
n (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. |Υ| =
(n−1

d

)
(“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Counting simplicial spanning trees of K d
n

Conjecture [Bolker ’76]∑
Υ∈SST (Kd

n )

|H̃d−1(Υ)|2

= n(n−2
d )

Proof uses determinant of reduced Laplacian of Kd
n . “Reduced”

now means pick one vertex, and then remove rows/columns
corresponding to all (d − 1)-dimensional faces containing that
vertex.
L = ∂∂T

∂ : ∆d → ∆d−1 boundary
∂T : ∆d−1 → ∆d coboundary
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Example n = 4, d = 2

∂T =

12 13 14 23 24 34

123 -1 1 0 -1 0 0
124 -1 0 1 0 -1 0
134 0 -1 1 0 0 -1
234 0 0 0 -1 1 -1

L =


2 −1 −1 1 1 0
−1 2 −1 −1 0 1
−1 −1 2 0 −1 −1
1 −1 0 2 −1 1
1 0 −1 −1 2 −1
0 1 −1 1 −1 2


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Simplicial spanning trees of arbitrary simplicial complexes

Let ∆ be a d-dimensional simplicial complex.
Υ ⊆ ∆ is a simplicial spanning tree of ∆ when:

0. Υ(d−1) = ∆(d−1) (“spanning”);

1. H̃d−1(Υ; Z) is a finite group (“connected”);

2. H̃d(Υ; Z) = 0 (“acyclic”);

3. fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆) (“count”).

I If 0. holds, then any two of 1., 2., 3. together imply the third
condition.

I When d = 1, coincides with usual definition.
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Example

Bipyramid with equator, 〈123, 124, 125, 134, 135, 234, 235〉

1

5

2

4

3

Let’s figure out all its simplicial spanning trees.
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Acyclic in Positive Codimension (APC)

I Denote by SST (∆) the set of simplicial spanning trees of ∆.
I Proposition SST (∆) 6= ∅ iff ∆ is APC, i.e. (equivalently)

I homology type of wedge of spheres;
I H̃j(∆; Z) is finite for all j < dim ∆.

I Many interesting complexes are APC.
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Simplicial Matrix-Tree Theorem — Version I

I ∆ a d-dimensional APC simplicial complex

I (d − 1)-dimensional (up-down) Laplacian Ld−1 = ∂d−1∂
T
d−1

I sd = product of nonzero eigenvalues of Ld−1.

Theorem [DKM ’09]

hd :=
∑

Υ∈SST (∆)

|H̃d−1(Υ)|2 =
sd

hd−1
|H̃d−2(∆)|2
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Simplicial Matrix-Tree Theorem — Version II

I Γ ∈ SST (∆(d−1))

I ∂Γ = restriction of ∂d to faces not in Γ

I reduced Laplacian LΓ = ∂Γ∂
T

Γ

Theorem [DKM ’09]

hd =
∑

Υ∈SST (∆)

|H̃d−1(Υ)|2 =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.

Note: The |H̃d−2| terms are often trivial.
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Bipyramid again

Γ = 12, 13, 14, 15 spanning tree of 1-skeleton

LΓ =

23 24 25 34 35

23 3 -1 -1 1 1
24 -1 2 0 -1 0
25 -1 0 2 0 -1
34 1 -1 0 2 0
35 1 0 -1 0 2

det LΓ = 15.
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Sandpiles and chip-firing

Motivation Think of a sandpile, with grains of sand on vertices
of a graph. When the pile at one place is too large, it
topples, sending grains to all its neighbors.

Abstraction Graph G with vertices v1, . . . , vn. Degree of vi is di .
Place ci ∈ Z chips (grains of sand) on vi .

Toppling If ci ≥ di , then vi may fire by sending one chip to
each of its neighbors.r r

rr��
�
� 3

0

0

1

r r
rr��

�
� 0

1

1

2

r r
rr��

�
� 1

2

1

0
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Source vertex

I To keep things going, pick one vertex vr to be a source vertex.
We can always add chips to vr .

I Put another way: cr can be any value.

I We might think cr ≤ 0, and ci ≥ 0 when i 6= r , or that vr can
fire even when cr ≤ dr .

r r
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Critical configurations

I A configuration is stable when no vertex (except the source
vertex) can fire.

I A configuration is recurrent when a series of topplings leads
back to that configuration, without letting any vertex (except
the source vertex) go negative.

I A configuration is critical when it is stable and recurrent.
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Fact: Every configuration topples to a unique critical configuration.
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Laplacian

Let’s make a matrix of how chips move when each vertex fires:r r
rr��

�
� 1

2

3

4


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2

 = D − A,

which is the Laplacian matrix

L = D − A = ∂∂T

where ∂ is the boundary (or incidence) matrix.
So firing v is subtracting Lv (row/column v from L) from
(c1, . . . , cn).
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Kernel ∂

I Did you notice?: Sum of chips stays constant.

I Also recall value of the source vertex can be anything,
including negative (other vertices should stay positive).

I So we may as well insist that∑
i

ci = 0.

In other words, ∂c = 0, i.e., c ∈ ker ∂.

I We can pick ci , i 6= r , arbitrarily, and keep c ∈ ker ∂ by
picking cr appropriately.r r
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Critical group

I Consider two configurations (in ker ∂) to be equivalent when
you can get from one to the other by chip-firing.

I Recall every configuration is equivalent to a critical
configuration.

I This equivalence means adding/subtracting integer multiples
of Lvi .

I In other words, instead of ker ∂, we look at

K (G ) := ker ∂/ im L

the critical group. (It is a graph invariant.)
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Reduced Laplacian and spanning trees

Theorem (Biggs ’99)

K := (ker ∂)/(im L) ∼= Zn−1/Lr ,

where Lr denotes reduced Laplacian; remove row and column
corresponding to source vertex.

Corollary

|K (G )| is the number of spanning trees of G.

Proof.
If M is a full rank t-dimensional matrix, then

|(Zt)/(im M)| = ± det M

and | det Lr | counts spanning trees.
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Example

r r
rr��

�
� 1

2

3

4 ∂ =

12 13 14 23 24

1 -1 -1 -1 0 0
2 1 0 0 -1 -1
3 0 1 0 1 0
4 0 0 1 0 1

L =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2


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3 −1 −1 −1
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Lr =

 3 −1 −1
−1 2 0
−1 0 2


det Lr = 8, and there are 8 spanning trees of this graph
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Discrete flow
Example

Where have we seen this before?

Graphs

I To count spanning trees, and compute critical
group, use the determinant of the reduced
Laplacian.

I Reduce Laplacian by removing a vertex.

Simplicial complexes

I To count spanning trees, use the determinant of
the reduced Laplacian.

I Reduce Laplacian by removing a
(d − 1)-dimensional spanning tree from up-down
Laplacian.

So let’s generalize critical groups to simplicial complexes, and see if
they can be computed by reduced Laplacians.
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Definition
Recall, for a graph G ,

K (G ) := ker ∂/ im L.

Let ∆ be a d-dimensional simplicial complex.

Cd(∆; Z)
∂T

d

�
∂d

Cd−1(∆; Z)
∂d−1−−−→ Cd−2(∆; Z)→ · · ·

Cd−1(∆; Z)
Ld−1−−−→ Cd−1(∆; Z)

∂d−1−−−→ Cd−2(∆; Z)→ · · ·

Define

K (∆) := ker ∂d−1/ im Ld−1,

where Ld−1 = ∂d∂
T
d is the (d − 1)-dimensional up-down Laplacian.
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Spanning trees

Theorem (DKM, pp ’11)

K (∆) := (ker ∂d−1)/(im Ld−1) ∼= Zt/LΓ

where Γ is a torsion-free (d − 1)-dimensional spanning tree, LΓ is
the reduced Laplacian (restriction to faces not in Γ), and
t = dim LΓ.

Corollary

|K (∆)| is the torsion-weighted number of d-dimensional spanning
trees of ∆.

Proof.
|K (∆)| = |(Zt)/LΓ| = | det LΓ|, which counts (torsion-weighted)
spanning trees.
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What does it look like?

K (∆) := ker ∂d−1/ im Ld−1 ⊆ Zm

I Put integers on (d − 1)-faces of ∆. Orient faces arbitrarily.
d = 2: flow; d = 3: circulation; etc.

I conservative flow
I d = 2: chips do not accumulate or deplete at any vertex;
I d = 3: face circulation at each edge adds to zero.

I By theorem, just specify values off the spanning tree.

6
4

5

1
2
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Firing faces

K (∆) := ker ∂d−1/ im Ld−1 ⊆ Zm

Toppling/firing moves the flow to “neighboring” (d − 1)-faces,
across d-faces.

1

3

3

3

4

2 2
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Open problem: Critical configurations?

I What are the critical configurations?

I i.e., canonical set of representatives

I We could pick any set of representatives; by definition, there
is some sequence of firings taking any configuration to the
representative.

I But this misses the sense of “critical”.

I Main obstacle is idea of what is “positive”.
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Example: Spheres

Theorem
If ∆ is a sphere, with n facets, then K (∆) ∼= Zn.

K (∆) := ker ∂d−1/ im Ld−1

Proof.

I K (∆) is generated by boundaries of facets ∂F .

I In a sphere, the Laplacian of a ridge shows if facets F ,G are
adjacent, then ∂F ≡ ±∂G (mod im L).

I So K (∆) has a single generator, so it is cyclic.

I |K (∆)| is the number of spanning trees, and there is one tree
for every facet (remove that facet for the tree)
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Final thought

Terry Pratchett, The Colour of Magic:
“Do you not know that what you belittle by the name tree is but
the mere four-dimensional analogue of a whole multidimensional
universe which—no, I can see you do not.”

But, now, you do.
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