Spanning trees and the critical group of simplicial complexes

Art Duval ${ }^{1} \quad$ Caroline Klivans ${ }^{2}$ Jeremy Martin ${ }^{3}$
${ }^{1}$ University of Texas at El Paso
${ }^{2}$ University of Chicago
${ }^{3}$ University of Kansas
Mathematics Seminar Reed College
April 28, 2011

Spanning trees of K_{n}

Theorem (Cayley)
K_{n} has n^{n-2} spanning trees.

Spanning trees of K_{n}

Theorem (Cayley)
K_{n} has n^{n-2} spanning trees.
$T \subseteq E\left(K_{n}\right)$ is a spanning tree of K_{n} when:
0 . spanning: T contains all vertices;

1. connected $\left(\tilde{H}_{0}(T)=0\right)$
2. no cycles $\left(\tilde{H}_{1}(T)=0\right)$
3. correct count: $|T|=n-1$

If 0 . holds, then any two of $1 ., 2 ., 3$. together imply the third condition.

Example: K_{4}

-4 trees like $T=2 \downarrow 4$

Example: K_{4}

Example: K_{4}

Total is $16=4^{2}$.

Laplacian

Definition The
$L(G)$.

Laplacian matrix of graph G, denoted by

Laplacian

Definition The Laplacian matrix of graph G, denoted by
$L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Laplacian

Definition The
Laplacian matrix of graph G, denoted by
$L(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

Laplacian

Definition The reduced Laplacian matrix of graph G, denoted by $L_{r}(G)$.
Defn 1: $L(G)=D(G)-A(G)$

$$
\begin{aligned}
& D(G)=\operatorname{diag}\left(\operatorname{deg} v_{1}, \ldots, \operatorname{deg} v_{n}\right) \\
& A(G)=\operatorname{adjacency} \text { matrix }
\end{aligned}
$$

Defn 2: $L(G)=\partial(G) \partial(G)^{T}$

$$
\partial(G)=\text { incidence matrix (boundary matrix) }
$$

"Reduced": remove rows/columns corresponding to any one vertex

Example

$\partial=$| | 12 | 13 | 14 | 23 | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | 0 | 0 |
| 2 | 1 | 0 | 0 | -1 | -1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 0 | 1 | 0 | 1 |

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
$$

Matrix-Tree Theorems

Version I Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then G has

$$
\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

spanning trees.
Version II G has $\left|\operatorname{det} L_{r}(G)\right|$ spanning trees Proof [Version II]

$$
\begin{aligned}
\operatorname{det} L_{r}(G) & =\operatorname{det} \partial_{r}(G) \partial_{r}(G)^{T}=\sum_{T}\left(\operatorname{det} \partial_{r}(T)\right)^{2} \\
& =\sum_{T}(\pm 1)^{2}
\end{aligned}
$$

by Binet-Cauchy

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J & (n \times n) ; \\
L_{r}\left(K_{n}\right) & =n l-J & (n-1 \times n-1)
\end{aligned}
$$

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J & (n \times n) ; \\
L_{r}\left(K_{n}\right) & =n l-J & (n-1 \times n-1)
\end{aligned}
$$

Version I: Eigenvalues of L are $n-n$ (multiplicity 1), $n-0$ (multiplicity $n-1$), so

$$
\frac{n^{n-1}}{n}=n^{n-2}
$$

Example: K_{n}

$$
\begin{aligned}
L\left(K_{n}\right) & =n l-J & (n \times n) ; \\
L_{r}\left(K_{n}\right) & =n l-J & (n-1 \times n-1)
\end{aligned}
$$

Version I: Eigenvalues of L are $n-n$ (multiplicity 1), $n-0$ (multiplicity $n-1$), so

$$
\frac{n^{n-1}}{n}=n^{n-2}
$$

Version II:

$$
\begin{aligned}
\operatorname{det} L_{r} & =\prod \text { eigenvalues } \\
& =(n-0)^{(n-1)-1}(n-(n-1)) \\
& =n^{n-2}
\end{aligned}
$$

Complete skeleta of simplicial complexes

Simplicial complex $\Delta \subseteq 2^{V}$;

$$
F \subseteq G \in \Delta \Rightarrow F \in \Delta .
$$

Complete skeleta of simplicial complexes

Simplicial complex $\Delta \subseteq 2^{V}$;

$$
F \subseteq G \in \Delta \Rightarrow F \in \Delta
$$

Complete skeleton The d-dimensional complete complex on n vertices, i.e.,

$$
K_{n}^{d}=\{F \subseteq V:|F| \leq d+1\}
$$

$$
\left(\text { so } K_{n}=K_{n}^{1}\right) .
$$

Simplicial spanning trees of K_{n}^{d} [Kalai, '83]

$\Upsilon \subseteq K_{n}^{d}$ is a simplicial spanning tree of K_{n}^{d} when:
0. $\Upsilon_{(d-1)}=K_{n}^{d-1}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $|\Upsilon|=\binom{n-1}{d}$ ("count").

- If 0 . holds, then any two of $1 ., 2 ., 3$. together imply the third condition.
- When $d=1$, coincides with usual definition.

Counting simplicial spanning trees of K_{n}^{d}

Conjecture [Bolker '76]

$$
=n^{\binom{n-2}{d}}
$$

Counting simplicial spanning trees of K_{n}^{d}

Theorem [Kalai '83]

$$
\sum_{\Upsilon \in S S T\left(K_{n}^{d}\right)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=n^{\binom{n-2}{d}}
$$

Counting simplicial spanning trees of K_{n}^{d}

Theorem [Kalai '83]

$$
\sum_{\Upsilon \in S S T\left(K_{n}^{d}\right)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=n^{\binom{n-2}{d}}
$$

Proof uses determinant of reduced Laplacian of K_{n}^{d}. "Reduced" now means pick one vertex, and then remove rows/columns corresponding to all ($d-1$)-dimensional faces containing that vertex.
$L=\partial \partial^{T}$
$\partial: \Delta_{d} \rightarrow \Delta_{d-1}$ boundary
$\partial^{T}: \Delta_{d-1} \rightarrow \Delta_{d}$ coboundary

Example $n=4, d=2$

Simplicial spanning trees of arbitrary simplicial complexes

Let Δ be a d-dimensional simplicial complex. $\Upsilon \subseteq \Delta$ is a simplicial spanning tree of Δ when:
0. $\Upsilon_{(d-1)}=\Delta_{(d-1)}$ ("spanning");

1. $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is a finite group ("connected");
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ ("acyclic");
3. $f_{d}(\Upsilon)=f_{d}(\Delta)-\tilde{\beta}_{d}(\Delta)+\tilde{\beta}_{d-1}(\Delta)($ "count" $)$.

- If 0 . holds, then any two of $1 ., 2 ., 3$. together imply the third condition.
- When $d=1$, coincides with usual definition.

Example

Bipyramid with equator, $\langle 123,124,125,134,135,234,235\rangle$

Let's figure out all its simplicial spanning trees.

Acyclic in Positive Codimension (APC)

- Denote by $\operatorname{SST}(\Delta)$ the set of simplicial spanning trees of Δ.
- Proposition $\operatorname{SST}(\Delta) \neq \emptyset$ iff Δ is APC, i.e. (equivalently)
- homology type of wedge of spheres;
- $\tilde{H}_{j}(\Delta ; \mathbb{Z})$ is finite for all $j<\operatorname{dim} \Delta$.
- Many interesting complexes are APC.

Simplicial Matrix-Tree Theorem — Version I

- Δ a d-dimensional APC simplicial complex
- $\left(d-1\right.$)-dimensional (up-down) Laplacian $L_{d-1}=\partial_{d-1} \partial_{d-1}^{T}$
- $s_{d}=$ product of nonzero eigenvalues of L_{d-1}.

Theorem [DKM '09]

$$
h_{d}:=\sum_{\Upsilon \in S S T(\Delta)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{s_{d}}{h_{d-1}}\left|\tilde{H}_{d-2}(\Delta)\right|^{2}
$$

Simplicial Matrix-Tree Theorem - Version II

- $\Gamma \in \operatorname{SST}\left(\Delta_{(d-1)}\right)$
- $\partial_{\Gamma}=$ restriction of $\partial_{\boldsymbol{d}}$ to faces not in Γ
- reduced Laplacian $L_{\Gamma}=\partial_{\Gamma} \partial^{T}{ }_{\Gamma}$

Theorem [DKM '09]

$$
h_{d}=\sum_{\Upsilon \in S S T(\Delta)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=\frac{\left|\tilde{H}_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|\tilde{H}_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} L_{\Gamma} .
$$

Note: The $\left|\tilde{H}_{d-2}\right|$ terms are often trivial.

Bipyramid again

$\Gamma=12,13,14,15$ spanning tree of 1 -skeleton

Bipyramid again

$\Gamma=12,13,14,15$ spanning tree of 1 -skeleton

$L_{\Gamma}=$| | 23 | 24 | 25 | 34 | 35 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 23 | 3 | -1 | -1 | 1 | 1 |
| 24 | -1 | 2 | 0 | -1 | 0 |
| 25 | -1 | 0 | 2 | 0 | -1 |
| 34 | 1 | -1 | 0 | 2 | 0 |
| 35 | 1 | 0 | -1 | 0 | 2 |

Bipyramid again

$\Gamma=12,13,14,15$ spanning tree of 1 -skeleton

$L_{\Gamma}=$| | 23 | 24 | 25 | 34 | 35 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 23 | 3 | -1 | -1 | 1 | 1 |
| 24 | -1 | 2 | 0 | -1 | 0 |
| 25 | -1 | 0 | 2 | 0 | -1 |
| 34 | 1 | -1 | 0 | 2 | 0 |
| 35 | 1 | 0 | -1 | 0 | 2 |

$\operatorname{det} L_{\Gamma}=15$.

Sandpiles and chip-firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.

Sandpiles and chip-firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
Abstraction Graph G with vertices v_{1}, \ldots, v_{n}. Degree of v_{i} is d_{i}. Place $c_{i} \in \mathbb{Z}$ chips (grains of sand) on v_{i}.

Sandpiles and chip-firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
Abstraction Graph G with vertices v_{1}, \ldots, v_{n}. Degree of v_{i} is d_{i}. Place $c_{i} \in \mathbb{Z}$ chips (grains of sand) on v_{i}.
Toppling If $c_{i} \geq d_{i}$, then v_{i} may fire by sending one chip to each of its neighbors.

Sandpiles and chip-firing

Motivation Think of a sandpile, with grains of sand on vertices of a graph. When the pile at one place is too large, it topples, sending grains to all its neighbors.
Abstraction Graph G with vertices v_{1}, \ldots, v_{n}. Degree of v_{i} is d_{i}. Place $c_{i} \in \mathbb{Z}$ chips (grains of sand) on v_{i}.
Toppling If $c_{i} \geq d_{i}$, then v_{i} may fire by sending one chip to each of its neighbors.

Source vertex

- To keep things going, pick one vertex v_{r} to be a source vertex. We can always add chips to v_{r}.

Source vertex

- To keep things going, pick one vertex v_{r} to be a source vertex. We can always add chips to v_{r}.
- Put another way: c_{r} can be any value.

Source vertex

- To keep things going, pick one vertex v_{r} to be a source vertex. We can always add chips to v_{r}.
- Put another way: c_{r} can be any value.
- We might think $c_{r} \leq 0$, and $c_{i} \geq 0$ when $i \neq r$, or that v_{r} can fire even when $c_{r} \leq d_{r}$.

Source vertex

- To keep things going, pick one vertex v_{r} to be a source vertex. We can always add chips to v_{r}.
- Put another way: c_{r} can be any value.
- We might think $c_{r} \leq 0$, and $c_{i} \geq 0$ when $i \neq r$, or that v_{r} can fire even when $c_{r} \leq d_{r}$.

Critical configurations

- A configuration is stable when no vertex (except the source vertex) can fire.

Critical configurations

- A configuration is stable when no vertex (except the source vertex) can fire.
- A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.

Critical configurations

- A configuration is stable when no vertex (except the source vertex) can fire.
- A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- A configuration is critical when it is stable and recurrent.

Critical configurations

- A configuration is stable when no vertex (except the source vertex) can fire.
- A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- A configuration is critical when it is stable and recurrent.

Critical configurations

- A configuration is stable when no vertex (except the source vertex) can fire.
- A configuration is recurrent when a series of topplings leads back to that configuration, without letting any vertex (except the source vertex) go negative.
- A configuration is critical when it is stable and recurrent.

Fact: Every configuration topples to a unique critical configuration.

Laplacian

Let's make a matrix of how chips move when each vertex fires:

Laplacian

Let's make a matrix of how chips move when each vertex fires:

$$
\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)=D-A
$$

Laplacian

Let's make a matrix of how chips move when each vertex fires:

$$
\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)=D-A
$$

which is the Laplacian matrix

$$
L=D-A=\partial \partial^{T}
$$

where ∂ is the boundary (or incidence) matrix.

Laplacian

Let's make a matrix of how chips move when each vertex fires:

which is the Laplacian matrix

$$
L=D-A=\partial \partial^{T}
$$

where ∂ is the boundary (or incidence) matrix.
So firing v is subtracting $L v$ (row/column v from L) from $\left(c_{1}, \ldots, c_{n}\right)$.

Kernel ∂

- Did you notice?: Sum of chips stays constant.

Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).

Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$
\sum_{i} c_{i}=0
$$

In other words, $\partial c=0$, i.e., $c \in \operatorname{ker} \partial$.

Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$
\sum_{i} c_{i}=0
$$

In other words, $\partial c=0$, i.e., $c \in \operatorname{ker} \partial$.

- We can pick $c_{i}, i \neq r$, arbitrarily, and keep $c \in \operatorname{ker} \partial$ by picking c_{r} appropriately.

Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$
\sum_{i} c_{i}=0
$$

In other words, $\partial c=0$, i.e., $c \in \operatorname{ker} \partial$.

- We can pick $c_{i}, i \neq r$, arbitrarily, and keep $c \in \operatorname{ker} \partial$ by picking c_{r} appropriately.

Kernel ∂

- Did you notice?: Sum of chips stays constant.
- Also recall value of the source vertex can be anything, including negative (other vertices should stay positive).
- So we may as well insist that

$$
\sum_{i} c_{i}=0
$$

In other words, $\partial c=0$, i.e., $c \in \operatorname{ker} \partial$.

- We can pick $c_{i}, i \neq r$, arbitrarily, and keep $c \in \operatorname{ker} \partial$ by picking c_{r} appropriately.

Critical group

- Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.

Critical group

- Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.

Critical group

- Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.
- This equivalence means adding/subtracting integer multiples of $L v_{i}$.

Critical group

- Consider two configurations (in ker ∂) to be equivalent when you can get from one to the other by chip-firing.
- Recall every configuration is equivalent to a critical configuration.
- This equivalence means adding/subtracting integer multiples of $L v_{i}$.
- In other words, instead of ker ∂, we look at

$$
K(G):=\operatorname{ker} \partial / \operatorname{im} L
$$

the critical group. (It is a graph invariant.)

Reduced Laplacian and spanning trees

Theorem (Biggs '99)

$$
K:=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{n-1} / L_{r},
$$

where L_{r} denotes reduced Laplacian; remove row and column corresponding to source vertex.

Reduced Laplacian and spanning trees

Theorem (Biggs '99)

$$
K:=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{n-1} / L_{r},
$$

where L_{r} denotes reduced Laplacian; remove row and column corresponding to source vertex.
Corollary
$|K(G)|$ is the number of spanning trees of G.

Reduced Laplacian and spanning trees

Theorem (Biggs '99)

$$
K:=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{n-1} / L_{r},
$$

where L_{r} denotes reduced Laplacian; remove row and column corresponding to source vertex.
Corollary
$|K(G)|$ is the number of spanning trees of G.
Proof.
If M is a full rank t-dimensional matrix, then

$$
\left|\left(\mathbb{Z}^{t}\right) /(\operatorname{im} M)\right|= \pm \operatorname{det} M
$$

Reduced Laplacian and spanning trees

Theorem (Biggs '99)

$$
K:=(\operatorname{ker} \partial) /(\operatorname{im} L) \cong \mathbb{Z}^{n-1} / L_{r},
$$

where L_{r} denotes reduced Laplacian; remove row and column corresponding to source vertex.
Corollary
$|K(G)|$ is the number of spanning trees of G.
Proof.
If M is a full rank t-dimensional matrix, then

$$
\left|\left(\mathbb{Z}^{t}\right) /(\operatorname{im} M)\right|= \pm \operatorname{det} M
$$

and $\left|\operatorname{det} L_{r}\right|$ counts spanning trees.

Example

$\partial=$| | 12 | 13 | 14 | 23 | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | -1 | -1 | 0 | 0 |
| 2 | 1 | 0 | 0 | -1 | -1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 0 | 1 | 0 | 1 |

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
$$

Example

$$
L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right)
$$

Example

$$
\begin{aligned}
& L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right) \\
& L_{r}=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& L=\left(\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right) \\
& L_{r}=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right)
\end{aligned}
$$

$\operatorname{det} L_{r}=8$, and there are 8 spanning trees of this graph

Where have we seen this before?

Graphs

Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.

Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

- To count spanning trees, use the determinant of the reduced Laplacian.

Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

- To count spanning trees, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a ($d-1$)-dimensional spanning tree from up-down Laplacian.

Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

- To count spanning trees, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a ($d-1$)-dimensional spanning tree from up-down Laplacian.

Where have we seen this before?

Graphs

- To count spanning trees, and compute critical group, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a vertex.

Simplicial complexes

- To count spanning trees, use the determinant of the reduced Laplacian.
- Reduce Laplacian by removing a ($d-1$)-dimensional spanning tree from up-down Laplacian.

So let's generalize critical groups to simplicial complexes, and see if they can be computed by reduced Laplacians.

Definition

Recall, for a graph G,

$$
K(G):=\operatorname{ker} \partial / \operatorname{im} L .
$$

Definition

Recall, for a graph G,

$$
K(G):=\operatorname{ker} \partial / \operatorname{im} L
$$

Let Δ be a d-dimensional simplicial complex.

$$
\begin{gathered}
C_{d}(\Delta ; \mathbb{Z}) \stackrel{\partial_{d}^{T}}{\leftrightarrows} C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta ; \mathbb{Z}) \rightarrow \cdots \\
C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta ; \mathbb{Z}) \rightarrow \cdots
\end{gathered}
$$

Definition

Recall, for a graph G,

$$
K(G):=\operatorname{ker} \partial / \operatorname{im} L .
$$

Let Δ be a d-dimensional simplicial complex.

$$
\begin{gathered}
C_{d}(\Delta ; \mathbb{Z}) \stackrel{\stackrel{\partial_{d}^{\top}}{\leftrightarrows}}{\stackrel{\partial_{d}}{\leftrightarrows}} C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta ; \mathbb{Z}) \rightarrow \cdots \\
C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{L_{d-1}} C_{d-1}(\Delta ; \mathbb{Z}) \xrightarrow{\partial_{d-1}} C_{d-2}(\Delta ; \mathbb{Z}) \rightarrow \cdots
\end{gathered}
$$

Define

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1}
$$

where $L_{d-1}=\partial_{d} \partial_{d}^{T}$ is the $(d-1)$-dimensional up-down Laplacian.

Spanning trees

Theorem (DKM, pp '11)

$$
K(\Delta):=\left(\operatorname{ker} \partial_{d-1}\right) /\left(\operatorname{im} L_{d-1}\right) \cong \mathbb{Z}^{t} / L_{\Gamma}
$$

where Γ is a torsion-free $(d-1)$-dimensional spanning tree, L_{Γ} is the reduced Laplacian (restriction to faces not in Г), and $t=\operatorname{dim} L_{\Gamma}$.

Spanning trees

Theorem (DKM, pp '11)

$$
K(\Delta):=\left(\operatorname{ker} \partial_{d-1}\right) /\left(\operatorname{im} L_{d-1}\right) \cong \mathbb{Z}^{t} / L_{\Gamma}
$$

where Γ is a torsion-free $(d-1)$-dimensional spanning tree, L_{Γ} is the reduced Laplacian (restriction to faces not in Γ), and $t=\operatorname{dim} L_{r}$.

Corollary

$|K(\Delta)|$ is the torsion-weighted number of d-dimensional spanning trees of Δ.

Proof.

$|K(\Delta)|=\left|\left(\mathbb{Z}^{t}\right) / L_{\Gamma}\right|=\left|\operatorname{det} L_{\Gamma}\right|$, which counts (torsion-weighted) spanning trees.

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

- Put integers on $(d-1)$-faces of Δ. Orient faces arbitrarily. $d=2$: flow; $d=3$: circulation; etc.

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

- Put integers on ($d-1$)-faces of Δ. Orient faces arbitrarily. $d=2$: flow; $d=3$: circulation; etc.
- conservative flow

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

- Put integers on ($d-1$)-faces of Δ. Orient faces arbitrarily. $d=2$: flow; $d=3$: circulation; etc.
- conservative flow
- $d=2$: chips do not accumulate or deplete at any vertex;

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

- Put integers on $(d-1)$-faces of Δ. Orient faces arbitrarily. $d=2$: flow; $d=3$: circulation; etc.
- conservative flow
- $d=2$: chips do not accumulate or deplete at any vertex;
- $d=3$: face circulation at each edge adds to zero.

What does it look like?

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

- Put integers on $(d-1)$-faces of Δ. Orient faces arbitrarily. $d=2$: flow; $d=3$: circulation; etc.
- conservative flow
- $d=2$: chips do not accumulate or deplete at any vertex;
- $d=3$: face circulation at each edge adds to zero.
- By theorem, just specify values off the spanning tree.

Firing faces

$$
K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1} \subseteq \mathbb{Z}^{m}
$$

Toppling/firing moves the flow to "neighboring" ($d-1$)-faces, across d-faces.

Open problem: Critical configurations?

- What are the critical configurations?

Open problem: Critical configurations?

- What are the critical configurations?
- i.e., canonical set of representatives

Open problem: Critical configurations?

- What are the critical configurations?
- i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.

Open problem: Critical configurations?

- What are the critical configurations?
- i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
- But this misses the sense of "critical".

Open problem: Critical configurations?

- What are the critical configurations?
- i.e., canonical set of representatives
- We could pick any set of representatives; by definition, there is some sequence of firings taking any configuration to the representative.
- But this misses the sense of "critical".
- Main obstacle is idea of what is "positive".

Example: Spheres

Theorem
If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_{n}$.

Example: Spheres

Theorem
If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_{n}$.
$K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1}$
Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F.

Example: Spheres

Theorem
If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_{n}$.
$K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1}$
Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F.
- In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G(\bmod \operatorname{im} L)$.

Example: Spheres

Theorem
If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_{n}$.
$K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1}$
Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F.
- In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G(\bmod \operatorname{im} L)$.
- So $K(\Delta)$ has a single generator, so it is cyclic.

Example: Spheres

Theorem

If Δ is a sphere, with n facets, then $K(\Delta) \cong \mathbb{Z}_{n}$.
$K(\Delta):=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1}$
Proof.

- $K(\Delta)$ is generated by boundaries of facets ∂F.
- In a sphere, the Laplacian of a ridge shows if facets F, G are adjacent, then $\partial F \equiv \pm \partial G(\bmod \operatorname{im} L)$.
- So $K(\Delta)$ has a single generator, so it is cyclic.
- $|K(\Delta)|$ is the number of spanning trees, and there is one tree for every facet (remove that facet for the tree)

Final thought

Terry Pratchett, The Colour of Magic:
"Do you not know that what you belittle by the name tree is but the mere four-dimensional analogue of a whole multidimensional universe which-no, I can see you do not."

Final thought

Terry Pratchett, The Colour of Magic:
"Do you not know that what you belittle by the name tree is but the mere four-dimensional analogue of a whole multidimensional universe which-no, I can see you do not."

But, now, you do.

