A Relative Laplacian spectral recursion CombinaTexas Texas State University, San Marcos February, '05

A Relative Laplacian spectral recursion

Art Duval, University of Texas at El Paso

OVERVIEW

The **eigenvalues** of the **combinatorial Laplacian** of the independence complexes of **matroids** and of **shifted** complexes are **integral**, with combinatorial formulas. (KRS '00; DR '02)

For "nice" **relative pairs** of matroids and shifted complexes, there are nice formulas, too. (D '03)

These eigenvalues satisfy the **same** nice **recursion** for both matroids and shifted complexes. (D '03)

Theorem: This recursion works for the "nice" relative pairs as well, using the "right" definition of each term of the recursion in the relative case. (new)

SHIFTED FAMILIES AND COMPLEXES

Shifted family \mathcal{K} : non-empty family of k-subsets of ground set $E = \{1, \dots, n\}$ satisfying

$$orall F \in \mathcal{K}, \ orall v \in F, \ orall v' < v, \ ext{if} \ v'
ot \in F, \ ext{then}$$
 $(F-v) \cup v' \in \mathcal{K}.$

Example: 123, 124, 125, 126, 134, 135, 136, 145, 234, 235, 236.

A simplicial complex is shifted if its family of i-dimensional faces is shifted, for all i.

The simplicial complex formed by taking all subsets of every set $F \in \mathcal{K}$ is a pure shifted simplicial complex.

ORDER IDEAL

4

MATROIDS

Bases \mathcal{B} : non-empty family of k-subsets of ground set $E = \{1, ..., n\}$ satisfying

 $\forall B \in \mathcal{B}, \ \forall b \in B, \ \forall B' \in \mathcal{B}, \ \exists b' \in B' \text{ such that}$ $(B-b) \cup b' \in \mathcal{B}.$

Example:

<u>, 4</u>		$(3 \in B)$			$(3 \not\in B)$			
$1/\sqrt{3}/5\sqrt{7}$		1346	2346	12	46	1456	1467	
2 6	$\mathcal{B} =$	1347	2347	12	47	1457	2467	
		1356	2356	12	56	2456		
		1357	2357	12	57	2457		
		1367	2367	12	67			

The simplicial complex formed by taking all subsets of every base $B \in \mathcal{B}$ is the set of independent sets IN(M) of matroid M.

RELATIVE PAIRS OF COMPLEXES

If $\Delta' \subseteq \Delta$ are a simplicial complexes on the same set of vertices, then $\Phi = (\Delta, \Delta') := \Delta - \Delta'$ is a relative pair of complexes.

When $\Delta' = \emptyset$, then $\Phi = (\Delta, \emptyset) = \Delta$.

 Φ is an interval in the Boolean algebra.

LAPLACIANS

 $C_i = C \Phi_i$, the *i*-dimensional \mathbb{R} -chains of Φ (\mathbb{R} -linear combinations of *i*-dim'l faces of Φ)

 $\partial = \partial_i \colon C_i \to C_{i-1}$ usual signed boundary $\delta_{i-1} = \partial_i^* \colon C_{i-1} \to C_i$ coboundary.

$$C_{i+1} \stackrel{\partial}{\underset{\partial^*}{\longrightarrow}} C_i \stackrel{\partial}{\underset{\partial^*}{\longrightarrow}} C_{i-1}$$

Defn: *i*-dimensional **Laplacian** of Φ :

$$L_i(\Phi) = \partial_{i+1}\partial_{i+1}^* + \partial_i^*\partial_i \colon C_i \to C_i$$

Example:

EIGENVALUES OF LAPLACIANS

Let $s(L_i)$ denote multiset of eigenvalues of L_i . Define a natural generating function:

$$S_{\Phi}(t,q) := \sum_{i} t^{i} \sum_{\lambda \in \mathbf{s}(L_{i-1}(\Phi))} q^{\lambda}$$

E'vals are integers(!) w/nice formulas(!) for: pairs of shifted complexes with the *same vertex ordering* (D-Reiner '02; D '03);

pairs of matroids related by a *strong map* (Kook-Reiner-Stanton '00; D '03).

SPECTRAL RECURSION FOR MATROIDS...

Tutte polyn. deletion-contraction recursion:

$$T_M = T_{M-e} + T_{M/e}$$

 $\mathcal{B}(M-e) = \{B \in \mathcal{B} \colon e \notin B\} \qquad (r = r(M))$ $\mathcal{B}(M/e) = \{B - e \colon B \in \mathcal{B}, e \in B\} (r = r(M) - 1)$ $Thm (Kook) \colon S_M = qS_{M-e} + qtS_{M/e} + (1-q)(\text{error term}).$

Conj(Kook-Reiner): error term = $S_{(M-e,M/e)}$, where (M - e, M/e) = (IN(M - e), IN(M/e)).

Thm (D '03): This is true, i.e.,

$$S_M = qS_{M-e} + qtS_{M/e} + (1-q)S_{(M-e,M/e)}.$$

... AND FOR SHIFTED COMPLEXES

Generalize deletion and contraction to arbitrary simplicial complex Δ .

$$\Delta - e = \{F \in \Delta \colon e \notin F\}$$
$$\Delta / e = \{F - e \colon F \in \Delta, e \in F\} = \mathsf{lk}_{\Delta} e$$

$$S_{\Delta}(t,q) := \sum_{i} t^{i} \sum_{\lambda \in \mathbf{s}(L_{i-1}(\Delta))} q^{\lambda}$$

Thm (D '03): Spectral recursion holds for shifted complexes Δ :

$$S_{\Delta} = qS_{\Delta-e} + qtS_{\Delta/e} + (1-q)S_{(\Delta-e,\Delta/e)}.$$

RELATIVE RECURSION

Say
$$\Phi = (\Delta, \Delta')$$
. Define
 $\Phi - e = \{F \in \Phi : e \notin F\} = (\Delta - e, \Delta' - e)$
 $\Phi/e = \{F - e : F \in \Phi, e \in F\} = (\Delta/e, \Delta'/e)$
 $\Phi \parallel e = \Phi - \{(F, F \cup e) : (F, F \cup e) \subseteq \Phi\}$
 $\approx (\Delta - e, (\Delta' - e) \cup \Delta/e)$
 $\cup (((\Delta' - e) \cap \Delta/e), \Delta'/e)$

Thm: If Φ is shifted pair (same vertex ordering) or matroid pair (M - f, M/f), then

$$S_{\Phi} = qS_{\Phi-e} + qtS_{\Phi/e} + (1-q)S_{\Phi||e}$$

Example:

11

MORE ABOUT $\Phi \parallel e$

Original description of $(\Delta - e, \Delta/e)$ was $(\Delta, \operatorname{st}_{\Delta} e)$ (they are the same). In some sense, $\Phi \parallel e$ is $(\Phi, \operatorname{st}_{\Phi} e)$.

When plugging in q = 0, S is generating function for homology Betti numbers. $(\Delta, \operatorname{st}_{\Delta} e)$ has same homology as Δ , since $\operatorname{st}_{\Delta} e$ is contractible, so recursion for Δ is trivially true for all Δ . Same is true for Φ ; note $\operatorname{st}_{\Phi} e = (\operatorname{st}_{\Delta} e, \operatorname{st}_{\Delta'} e)$.