A Relative Laplacian spectral recursion Stanley 60th Birthday Conference MIT June, '04

A Relative Laplacian spectral recursion

Art Duval,
University of Texas at El Paso

OVERVIEW

The eigenvalues of the combinatorial Laplacian of the independence complexes of matroids and of shifted complexes are integral, with combinatorial formulas. (KRS '00; DR '02)

For "nice" relative pairs of matroids and shifted complexes, there are nice formulas, too. (D '03)

These eigenvalues satisfy the same nice recursion for both matroids and shifted complexes. (D '03)

Conjecture: This recursion works for "nice" relative pairs as well, using the "right" definition of each term of the recursion in the relative case. (new)

SHIFTED FAMILIES AND COMPLEXES

Shifted family \mathcal{K} : non-empty family of k-subsets of ground set $E=\{1, \ldots, n\}$ satisfying
$\forall F \in \mathcal{K}, \forall v \in F, \forall v^{\prime}<v$, if $v^{\prime} \notin F$, then

$$
(F-v) \cup v^{\prime} \in \mathcal{K} .
$$

Example: 123, 124, 125, 126, 134, 135, 136, 145, 234, 235, 236.

A simplicial complex is shifted if its family of i-dimensional faces is shifted, for all i.

The simplicial complex formed by taking all subsets of every set $F \in \mathcal{K}$ is a pure shifted simplicial complex.

ORDER IDEAL

MATROIDS

Bases \mathcal{B} : non-empty family of k-subsets of ground set $E=\{1, \ldots, n\}$ satisfying
$\forall B \in \mathcal{B}, \forall b \in B, \forall B^{\prime} \in \mathcal{B}, \exists b^{\prime} \in B^{\prime}$ such that

$$
(B-b) \cup b^{\prime} \in \mathcal{B} .
$$

Example:

$$
\mathcal{B}=
$$

The simplicial complex formed by taking all subsets of every base $B \in \mathcal{B}$ is the set of independent sets $\operatorname{IN}(M)$ of matroid M.

RELATIVE PAIRS OF COMPLEXES

If $\Delta^{\prime} \subseteq \Delta$ are a simplicial complexes on the same set of vertices, then $\Phi=\left(\Delta, \Delta^{\prime}\right):=\Delta-$ Δ^{\prime} is a relative pair of complexes.

When $\Delta^{\prime}=\emptyset$, then $\Phi=(\Delta, \emptyset)=\Delta$.
Φ is an interval in the Boolean algebra.

LAPLACIANS

$C_{i}=C \Phi_{i}$, the i-dimensional \mathbb{R}-chains of Φ (\mathbb{R}-linear combinations of i-dim'l faces of Φ)
$\partial=\partial_{i}: C_{i} \rightarrow C_{i-1}$ usual signed boundary $\delta_{i-1}=\partial_{i}^{*}: C_{i-1} \rightarrow C_{i}$ coboundary.

$$
C_{i+1} \stackrel{\partial}{\stackrel{\partial}{\partial^{*}}} C_{i} \stackrel{\partial}{\stackrel{\partial}{\partial}} C_{i-1}
$$

Defn: i-dimensional Laplacian of Φ :

$$
L_{i}(\Phi)=\partial_{i+1} \partial_{i+1}^{*}+\partial_{i}^{*} \partial_{i}: C_{i} \rightarrow C_{i}
$$

Example:

EIGENVALUES OF LAPLACIANS

Easy observations about s, eigenvalues
$\mathrm{s}\left(L_{i}\right)=\mathrm{s}\left(\partial_{i+1} \partial_{i+1}^{*}\right) \cup \mathrm{s}\left(\partial_{i}^{*} \partial_{i}\right)$
$\mathrm{s}\left(\partial_{i}^{*} \partial_{i}\right)=\mathrm{s}\left(\partial_{i} \partial_{i}^{*}\right)$, except for 0's
number of 0 eigenvalues is i th Betti number.

So we may as well just consider $s_{i}^{\prime \prime}=\mathrm{s}\left(\partial_{i}^{*} \partial_{i}\right)$; when $\Phi=(\Delta, \emptyset)=\Delta$, $s_{i}^{\prime \prime}$ only depends on C_{i}.

C_{i+1}	$\stackrel{\partial}{\underset{\partial}{*}}$	C_{i}	$\underset{\partial^{*}}{\stackrel{\partial}{\rightleftharpoons}}$	C_{i-1}
\mathbf{s}_{i+1}		\mathbf{s}_{i}		\mathbf{s}_{i-1}
$s_{i+1}^{\prime \prime}$		$s_{i}^{\prime \prime}$		$s_{i-1}^{\prime \prime}$
$0^{\beta_{i+1}}$		$0^{\beta_{i}}$		$0^{\beta_{i-1}}$
s_{i+1}^{\prime}		s_{i}^{\prime}		s_{i-1}^{\prime}

EIGENVALUES OF SHIFTED COMPLEXES

Defn d_{i} is the i-dimensional degree sequence $\left(d_{i}\right)_{j}=\# i$-faces containing vertex j.

Example
123134234
124135235
125136236
126145

Thm (D-Reiner '02): If a simplicial complex is shifted, then

$$
s_{i}^{\prime \prime}=\left(d_{i}\right)^{T},
$$

in every dimension i.

EIGENVALUES OF SHIFTED PAIRS

Defn: Assume \mathcal{K} is a k-family, \mathcal{K}^{\prime} is a $(k-1)$ family, and $\mathcal{K}^{\prime} \subseteq \partial \mathcal{K}$. Then

$$
\begin{aligned}
& d_{j}\left(\mathcal{K}, \mathcal{K}^{\prime}\right)=\left\{F \in \mathcal{K}: F-j \notin \mathcal{K}^{\prime}\right\}, \\
& \text { and } d\left(\mathcal{K}, \mathcal{K}^{\prime}\right)=\left(d_{1}, \ldots, d_{n}\right) . \\
& \mathcal{K} \quad 123 \\
& 124 \\
& \hline
\end{aligned}
$$

Thm (D^{\prime} '03): If \mathcal{K} and \mathcal{K}^{\prime} are shifted with the same vertex ordering, then $s\left(\mathcal{K}, \mathcal{K}^{\prime}\right)=d\left(\mathcal{K}, \mathcal{K}^{\prime}\right)^{T}$

EIGENVALUES OF MATROIDS

For matroids, eigenvalues are more easily described in terms of natural generating function:

$$
S_{M}(t, q):=\sum_{i} t^{i} \sum_{\lambda \in \mathrm{s}\left(L_{i-1}(\mathrm{IN}(M))\right)} q^{\lambda}
$$

Thm (Kook-Reiner-Stanton '00): For a matroid M with ground set E,

$$
S_{M}(t, q)=q^{|E|} \sum_{I \in \operatorname{IN}(M)} t^{\operatorname{rank}(\bar{I})}\left(q^{-1}\right)^{|\bar{\pi}(I)|}
$$

where $\bar{\pi}(I)$ is a function of I involving internal/external activity.
(Ask about details later.)

In particular, the eigenvalues of M are integers.

EIGENVALUES OF MATROID PAIRS

If the equivalent of pairs of shifted families with the same vertex ordering is strong maps, then it turns out we may as well restrict to ($M-$ $e, M / e)$.

Removing M / e from $M-e$ partitions $M-e$, by the basic circuit $\mathrm{ci}(B, e)$, the unique circuit (minimal dependent set) in $B \cup e$, so

$$
L(M-e, M / e)=\bigoplus_{\substack{C \text { circcuit } \\ e \in C}} L(M / C) .
$$

$\begin{array}{r} C= \\ \operatorname{ci}(B, e) \end{array}$	123	345	3467
$M-e$	12461257	14562456	1467
	12471267	14572457	2467
	1256		
M/C	$4_{6}^{4}{ }_{6}^{7}$.$^{1}{ }_{2}{ }^{7}{ }_{6}$.	.$^{1}{ }^{\text {c }}$ - ${ }^{5}$

SPECTRAL RECURSION FOR MATROIDS...

Tutte polyn. deletion-contraction recursion:

$$
\begin{array}{cl}
T_{M}=T_{M-e}+T_{M / e} \\
\mathcal{B}(M-e)=\{B \in \mathcal{B}: e \notin B\} \quad & (r=r(M)) \\
\mathcal{B}(M / e)=\{B-e: B \in \mathcal{B}, e \in B\} & (r=r(M)-1)
\end{array}
$$

Thm (Kook): $S_{M}=q S_{M-e}+q t S_{M / e}$ $+(1-q)$ (error term).
$\operatorname{Conj}($ Kook-Reiner $):$ error term $=S_{(M-e, M / e)}$, where $(M-e, M / e)=(\operatorname{IN}(M-e), \operatorname{IN}(M / e))$.

Thm (D '03): This is true, i.e.,

$$
S_{M}=q S_{M-e}+q t S_{M / e}+(1-q) S_{(M-e, M / e)}
$$

... AND FOR SHIFTED COMPLEXES

Generalize deletion and contraction to arbitrary simplicial complex Δ.

$$
\begin{aligned}
\Delta-e & =\{F \in \Delta: e \notin F\} \\
\Delta / e & =\{F-e: F \in \Delta, e \in F\} \quad=\mathrm{Ik}_{\Delta} e
\end{aligned}
$$

$$
S_{\Delta}(t, q):=\sum_{i} t^{i} \sum_{\lambda \in \mathbf{s}\left(L_{i-1}(\Delta)\right)} q^{\lambda}
$$

Thm (D '03): Spectral recursion holds for shifted complexes Δ :

$$
S_{\Delta}=q S_{\Delta-e}+q t S_{\Delta / e}+(1-q) S_{(\Delta-e, \Delta / e)}
$$

RELATIVE RECURSION

Say $\Phi=\left(\Delta, \Delta^{\prime}\right)$. Define

$$
\begin{aligned}
\Phi-e & =\{F \in \Phi: e \notin F\} \\
= & \left(\Delta-e, \Delta^{\prime}-e\right) \\
\Phi / e= & \{F-e: F \in \Phi, e \in F\} \\
= & \left(\Delta / e, \Delta^{\prime} / e\right) \\
\Phi \| e= & \Phi-\{(F, F \dot{\cup} e):(F, F \dot{\cup} e) \subseteq \Phi\} \\
\approx & \left(\Delta-e,\left(\Delta^{\prime}-e \cup \Delta / e\right)\right) \\
& \dot{\cup}\left(\left(\Delta^{\prime}-e \cap \Delta / e\right), \Delta^{\prime} / e\right)
\end{aligned}
$$

Conj: If Δ, Δ^{\prime} shifted $w /$ same vertex order or matroids $w /$ strong map, then

$$
S_{\Phi}=q S_{\Phi-e}+q t S_{\Phi / e}+(1-q) S_{\Phi \| e}
$$

Example:

$$
\begin{array}{lllll}
124 & 125 & 134 & 234 & \\
15 & 25 & 34 & 24 & 35
\end{array}
$$

MORE ABOUT $\Phi \| e$

Original description of $(\Delta-e, \Delta / e)$ was $\left(\Delta, \operatorname{st}_{\Delta} e\right)$ (they are the same). In some sense, $\Phi \| e$ is $\left(\Phi, \operatorname{st}_{\Phi} e\right)$.

When plugging in $q=0, S$ is generating function for homology Betti numbers. ($\Delta, \mathrm{st}_{\Delta} e$) has same homology as Δ, since st Δe is contractible, so recursion for Δ is trivially true for all Δ. Same is true for Φ; note $\mathrm{st}_{\Phi} e=$ $\left(\mathrm{st}_{\Delta} e, \mathrm{st}_{\Delta^{\prime}} e\right)$.

EIGENVALUES OF MATROIDS
 (details)

$$
S_{M}(t, q):=\sum_{i} t^{i} \sum_{\lambda \in \mathbf{s}\left(L_{i-1}(\operatorname{IN}(M))\right)} q^{\lambda}
$$

Thm (KRS '00): For matroid $M(E)$,

$$
S_{M}(t, q)=q^{|E|} \sum_{I \in \operatorname{IN}(M)} t^{\operatorname{rank}(\bar{I})}\left(q^{-1}\right)^{|\bar{\pi}(I)|},
$$

where:
$I=\pi(I) \dot{\cup} \sigma(I) ;$
$\pi(I)$ has internal activity 0 in \bar{I};
$\bar{\pi}(I)=\overline{\pi(I)} ;$ and
$\sigma(I)$ has external activity 0 in $\bar{I} / \bar{\pi}(I)$.
Etienne-Las Vergnas ('98) first showed that there is a unique such decomposition of I; the algorithm, due to KRS, to find this decomposition was essential to the proof of the spectral recursion for matroids.

