
A Relative Laplacian spectral recursion

Stanley 60th Birthday Conference

MIT

June, ’04



A Relative Laplacian spectral recursion

Art Duval,

University of Texas at El Paso

1



OVERVIEW

The eigenvalues of the combinatorial Lapla-

cian of the independence complexes of ma-

troids and of shifted complexes are integral,

with combinatorial formulas. (KRS ’00; DR

’02)

For “nice” relative pairs of matroids and shifted

complexes, there are nice formulas, too. (D

’03)

These eigenvalues satisfy the same nice recur-

sion for both matroids and shifted complexes.

(D ’03)

Conjecture: This recursion works for “nice”

relative pairs as well, using the “right” def-

inition of each term of the recursion in the

relative case. (new)
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SHIFTED FAMILIES AND COMPLEXES

Shifted family K: non-empty family of k-subsets

of ground set E = {1, . . . , n} satisfying

∀F ∈ K, ∀v ∈ F , ∀v′ < v, if v′ 6∈ F, then

(F − v) ∪ v′ ∈ K.

Example: 123, 124, 125, 126, 134, 135, 136,

145, 234, 235, 236.

A simplicial complex is shifted if its family of

i-dimensional faces is shifted, for all i.

The simplicial complex formed by taking all

subsets of every set F ∈ K is a pure shifted

simplicial complex.
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ORDER IDEAL
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MATROIDS

Bases B: non-empty family of k-subsets of

ground set E = {1, . . . , n} satisfying

∀B ∈ B, ∀b ∈ B, ∀B′ ∈ B, ∃b′ ∈ B′ such that

(B − b) ∪ b′ ∈ B.

Example:
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B =

(3 ∈ B) (3 6∈ B)
1346 2346 1246 1456 1467
1347 2347 1247 1457 2467
1356 2356 1256 2456
1357 2357 1257 2457
1367 2367 1267

The simplicial complex formed by taking all

subsets of every base B ∈ B is the set of inde-

pendent sets IN(M) of matroid M .
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RELATIVE PAIRS OF COMPLEXES

If ∆′ ⊆ ∆ are a simplicial complexes on the

same set of vertices, then Φ = (∆,∆′) := ∆−
∆′ is a relative pair of complexes.

When ∆′ = ∅, then Φ = (∆, ∅) = ∆.

Φ is an interval in the Boolean algebra.
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LAPLACIANS

Ci = CΦi, the i-dimensional R-chains of Φ

(R-linear combinations of i-dim’l faces of Φ)

∂ = ∂i : Ci → Ci−1 usual signed boundary

δi−1 = ∂∗i : Ci−1 → Ci coboundary.

Ci+1
∂


∂∗
Ci

∂


∂∗
Ci−1

Defn: i-dimensional Laplacian of Φ:

Li(Φ) = ∂i+1∂
∗
i+1 + ∂∗i ∂i : Ci → Ci

Example:
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EIGENVALUES OF LAPLACIANS

Easy observations about s, eigenvalues

s(Li) = s(∂i+1∂
∗
i+1) ∪ s(∂∗i ∂i)

s(∂∗i ∂i) = s(∂i∂
∗
i ), except for 0’s

number of 0 eigenvalues is ith Betti number.

So we may as well just consider s′′i = s(∂∗i ∂i);

when Φ = (∆, ∅) = ∆, s′′i only depends on Ci.

Ci+1
∂


∂∗

Ci
∂


∂∗

Ci−1

si+1 si si−1
s′′i+1 s′′i s′′i−1

0βi+1 0βi 0βi−1

s′i+1 s′i s′i−1
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EIGENVALUES OF SHIFTED COMPLEXES

Defn di is the i-dimensional degree sequence

(di)j = # i-faces containing vertex j.

Example
123 134 234
124 135 235
125 136 236
126 145

8
7
7
4
4
3

6 6 6 5 3 3 3 1 0 0 0

Thm (D-Reiner ’02): If a simplicial complex is

shifted, then

s′′i = (di)
T ,

in every dimension i.

9



EIGENVALUES OF SHIFTED PAIRS

Defn: Assume K is a k-family, K′ is a (k − 1)-

family, and K′ ⊆ ∂K. Then

dj(K,K′) = {F ∈ K : F − j 6∈ K′},

and d(K,K′) = (d1, . . . , dn).

K 123 124 234 134 145 125 235 135 126 236 136

K′ 24 34 45 25 35 26 16 36

K′ = {12,13,14,15,23}

Thm (D ’03): If K and K′ are shifted with the

same vertex ordering, then s(K,K′) = d(K,K′)T

7
4
4

3 3 3 3 1 1 1
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EIGENVALUES OF MATROIDS

For matroids, eigenvalues are more easily de-

scribed in terms of natural generating function:

SM(t, q) :=
∑
i

ti
∑

λ∈s(Li−1(IN(M)))

qλ

Thm (Kook-Reiner-Stanton ’00): For a ma-

troid M with ground set E,

SM(t, q) = q|E|
∑

I∈IN(M)

trank(Ī)(q−1)|π̄(I)|,

where π̄(I) is a function of I involving inter-

nal/external activity.

(Ask about details later.)

In particular, the eigenvalues of M are integers.
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EIGENVALUES OF MATROID PAIRS

If the equivalent of pairs of shifted families with
the same vertex ordering is strong maps, then
it turns out we may as well restrict to (M −
e,M/e).

Removing M/e from M − e partitions M − e,
by the basic circuit ci(B, e), the unique circuit
(minimal dependent set) in B ∪ e, so

L(M − e,M/e) =
⊕

C circuit
e∈C

L(M/C).
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SPECTRAL RECURSION

FOR MATROIDS. . .

Tutte polyn. deletion-contraction recursion:

TM = TM−e + TM/e

B(M − e) = {B ∈ B : e 6∈ B} (r = r(M))

B(M/e) = {B − e : B ∈ B, e ∈ B} (r = r(M)− 1)

Thm (Kook): SM = qSM−e + qtSM/e

+(1− q)(error term).

Conj(Kook-Reiner): error term = S(M−e,M/e),

where (M − e,M/e) = (IN(M − e), IN(M/e)).

Thm (D ’03): This is true, i.e.,

SM = qSM−e + qtSM/e + (1− q)S(M−e,M/e).
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. . . AND FOR SHIFTED COMPLEXES

Generalize deletion and contraction to arbi-

trary simplicial complex ∆.

∆− e = {F ∈∆: e 6∈ F}
∆/e = {F − e : F ∈∆, e ∈ F} = lk∆ e
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S∆(t, q) :=
∑
i

ti
∑

λ∈s(Li−1(∆))

qλ

Thm (D ’03): Spectral recursion holds for

shifted complexes ∆:

S∆ = qS∆−e + qtS∆/e + (1− q)S(∆−e,∆/e).
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RELATIVE RECURSION

Say Φ = (∆,∆′). Define

Φ− e = {F ∈ Φ: e 6∈ F}
= (∆− e,∆′ − e)

Φ/e = {F − e : F ∈ Φ, e ∈ F}
= (∆/e,∆′/e)

Φ ‖ e = Φ− {(F, F ∪̇ e): (F, F ∪̇ e) ⊆ Φ}
≈ (∆− e, (∆′ − e ∪∆/e))

∪̇ ((∆′ − e ∩∆/e),∆′/e)

Conj: If ∆,∆′ shifted w/same vertex order or
matroids w/strong map, then

SΦ = qSΦ−e + qtSΦ/e + (1− q)SΦ‖e

Example:

124 125 134 234

15 25 34 24 35

5
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MORE ABOUT Φ ‖ e

Original description of (∆−e,∆/e) was (∆, st∆ e)

(they are the same). In some sense, Φ ‖ e is

(Φ, stΦ e).

When plugging in q = 0, S is generating func-

tion for homology Betti numbers. (∆, st∆ e)

has same homology as ∆, since st∆ e is con-

tractible, so recursion for ∆ is trivially true

for all ∆. Same is true for Φ; note stΦ e =

(st∆ e, st∆′ e).
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EIGENVALUES OF MATROIDS
(details)

SM(t, q) :=
∑
i

ti
∑

λ∈s(Li−1(IN(M)))

qλ

Thm (KRS ’00): For matroid M(E),

SM(t, q) = q|E|
∑

I∈IN(M)

trank(Ī)(q−1)|π̄(I)|,

where:

I = π(I) ∪̇ σ(I);

π(I) has internal activity 0 in Ī;

π̄(I) = π(I); and

σ(I) has external activity 0 in Ī/π̄(I).

Etienne-Las Vergnas (’98) first showed that
there is a unique such decomposition of I; the
algorithm, due to KRS, to find this decompo-
sition was essential to the proof of the spectral
recursion for matroids.
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