Counting topologies of metric holomorphic polynomial field with simple zeros

Art Duval ${ }^{1}$, Martín Eduardo Frías-Armenta ${ }^{2}$
${ }^{1}$ University of Texas at El Paso, ${ }^{2}$ Universidad de Sonora
XXXI Semana Nacional de
Investigación y Docencia en Matemáticas
Taller de Estructuras Geométricas y Combinatoria
Universidad de Sonora (online)
May 27, 2021
AD supported by Simons Foundation Grant 516801

Act I

Setting the scene: Trees from flow diagrams

Metric holomorphic polynomial field with simple zeros

Metric holomorphic polynomial field with simple zeros

Complex rotation

Complex rotation

Put it all together, and get a graph

Trees

So we are looking at unlabeled trees with black and white vertices

- no white vertices are adjacent to each other
- each white vertex is adjacent to at least three black vertices
- no restriction on neighbors of black vertices

Trees

So we are looking at unlabeled trees with black and white vertices

- no white vertices are adjacent to each other
- each white vertex is adjacent to at least three black vertices
- no restriction on neighbors of black vertices

We want to count such trees up to rotation (but not reflection)

Example

The first two are the same, but the third is different.

Act II

Flashback: Counting (unlabeled) trees

How to grow different kinds of rooted trees, recursively

- Rooted trees:
- $\mathcal{A}=X \cdot E(\mathcal{A})$,
- E stands for "set of"
- Ordered rooted tree:
- $\mathcal{A}_{L}=X \cdot L\left(\mathcal{A}_{L}\right)$
- L stands for "linear order"
- Planar rooted trees:
- $P=X+X \cdot C\left(\mathcal{A}_{L}\right)$
- C stands for "cyclic order"

Example

Unrooting I: Center of tree

Definition

Center of a tree is the set of vertices v that minimize

$$
\max _{u} \mathrm{~d}(u, v)
$$

It is always either a single vertex, or an edge.

Example

Unrooting I: Center of tree

Definition

Center of a tree is the set of vertices v that minimize

$$
\max _{u} \mathrm{~d}(u, v)
$$

It is always either a single vertex, or an edge. So this naturally roots a tree at either a vertex or an edge.

Example

Unrooting II: Dissymmetry theorem

Theorem (Dissymmetry)

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

where \mathfrak{a} denotes unrooted trees and E_{2} is the species of sets with exactly two elements.

Unrooting II: Dissymmetry theorem

Theorem (Dissymmetry)

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2},
$$

where \mathfrak{a} denotes unrooted trees and E_{2} is the species of sets with exactly two elements.

Proof.
(Sketch) LHS is trees rooted at a vertex or an edge. RHS is trees (unrooted) or ordered pair of rooted trees.

Unrooting II: Dissymmetry theorem

Theorem (Dissymmetry)

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2},
$$

where \mathfrak{a} denotes unrooted trees and E_{2} is the species of sets with exactly two elements.

Proof.

(Sketch) LHS is trees rooted at a vertex or an edge. RHS is trees (unrooted) or ordered pair of rooted trees. So we need isomorphism between trees rooted at vertex or edge other than the center, with ordered pairs of rooted trees.

Quick note about unlabeling

Theorem (Dissymmetry)

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

where \mathfrak{a} denotes unrooted trees and E_{2} is the species of sets with exactly two elements.
Dissymmetry theorem allows us to count unrooted, but still labeled trees. To unlabel the trees, we need "cycle index series".

Act III

Return to the present day: Counting our trees

Black and white vertices, not at the root

Similar to ordered rooted trees, but now color-aware

Recursive equation

$$
\begin{gathered}
Y_{3}=Y_{1}+Y_{2}=X_{1} \cdot L\left(Y_{3}\right)+X_{2} \cdot L_{\geq 2}\left(X_{1} \cdot L\left(Y_{3}\right)\right) \\
y_{3}=x_{1} \ell+x_{2} \frac{\left(x_{1} \ell\right)^{2}}{1-\left(x_{1} \ell\right)}
\end{gathered}
$$

where $\ell=\frac{1}{1-y_{3}}$.

Recursive equation

$$
\begin{gathered}
Y_{3}=Y_{1}+Y_{2}=X_{1} \cdot L\left(Y_{3}\right)+X_{2} \cdot L_{\geq 2}\left(X_{1} \cdot L\left(Y_{3}\right)\right) \\
y_{3}=x_{1} \ell+x_{2} \frac{\left(x_{1} \ell\right)^{2}}{1-\left(x_{1} \ell\right)}
\end{gathered}
$$

where $\ell=\frac{1}{1-y_{3}}$. Simplifying,

$$
x_{1}+x_{1}^{2}\left(x_{2}-1\right)-\left(y_{3}-1\right)^{2} y_{3}-x_{1} y_{3}^{2}=0
$$

Unique real root $y_{3}\left(x_{1}, x_{2}\right)=$

Recursive equation

$$
\begin{array}{r}
Y_{3}=Y_{1}+Y_{2}=X_{1} \cdot L\left(Y_{3}\right)+X_{2} \cdot L_{\geq 2}\left(X_{1} \cdot L\left(Y_{3}\right)\right) \\
y_{3}=x_{1} \ell+x_{2} \frac{\left(x_{1} \ell\right)^{2}}{1-\left(x_{1} \ell\right)}
\end{array}
$$

where $\ell=\frac{1}{1-y_{3}}$. Simplifying,

$$
x_{1}+x_{1}^{2}\left(x_{2}-1\right)-\left(y_{3}-1\right)^{2} y_{3}-x_{1} y_{3}^{2}=0
$$

Unique real root $y_{3}\left(x_{1}, x_{2}\right)=$

$$
\begin{aligned}
& \frac{\left.\left(3-12 \times 1+15 \times 1^{2}+2 \times 1^{3}-27 \times 1^{2} \times 2+\sqrt{\left(4\left(-1+4 \times 1-\times 1^{2}\right)^{3}+\left(2-12 \times 1+15 \times 1^{1}+2 \times 1^{3}-27 \times 1^{2} \times 2\right)^{2}\right)}\right)^{1 / 3}\right)}{\left(3\left(2^{1 / 3}\left(-1+4 \times 1-\times 1^{2}\right)\right)\right.} \\
& -\frac{1}{32^{1 / 3}}\left(2-12 \times 1+15 \times 1^{2}+2 \times 1^{3}-27 \times 1^{2} \times 2+\sqrt{\left(4\left(-1+4 \times 1-\times 1^{2}\right)^{3}+\left(2-12 \times 1+15 \times 1^{2}+2 \times 1^{1}-27 \times 1^{2} \times 2\right)^{2}\right)}\right)
\end{aligned}
$$

Dissymmetry again

Recall

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

The same arguments apply. But now, paying attention to color,

$$
\mathcal{A}_{R}=\left(X_{1} \cdot\left(1+C\left(Y_{3}\right)\right)\right)+\left(X_{2} \cdot C_{\geq 3}\left(X_{1} \cdot L\left(Y_{3}\right)\right)\right)
$$

Dissymmetry again

Recall

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

The same arguments apply. But now, paying attention to color,

$$
\begin{aligned}
\mathcal{A}_{R} & =\left(X_{1} \cdot\left(1+C\left(Y_{3}\right)\right)\right)+\left(X_{2} \cdot C_{\geq 3}\left(X_{1} \cdot L\left(Y_{3}\right)\right)\right) \\
E_{2}\left(\mathcal{A}_{R}\right) & =E_{2}\left(Y_{1}\right)+Y_{2} \cdot Y_{1}=E_{2}\left(Y_{3}\right)-E_{2}\left(Y_{2}\right)
\end{aligned}
$$

Dissymmetry again

Recall

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

The same arguments apply. But now, paying attention to color,

$$
\begin{aligned}
\mathcal{A}_{R} & =\left(X_{1} \cdot\left(1+C\left(Y_{3}\right)\right)\right)+\left(X_{2} \cdot C_{\geq 3}\left(X_{1} \cdot L\left(Y_{3}\right)\right)\right) \\
E_{2}\left(\mathcal{A}_{R}\right) & =E_{2}\left(Y_{1}\right)+Y_{2} \cdot Y_{1}=E_{2}\left(Y_{3}\right)-E_{2}\left(Y_{2}\right) \\
\mathcal{A}_{R}^{2} & =Y_{1}^{2}+2 Y_{1} Y_{2}=Y_{3}^{2}-Y_{2}^{2}
\end{aligned}
$$

Dissymmetry again

Recall

$$
\mathcal{A}+E_{2}(\mathcal{A})=\mathfrak{a}+\mathcal{A}^{2}
$$

The same arguments apply. But now, paying attention to color,

$$
\begin{aligned}
\mathcal{A}_{R} & =\left(X_{1} \cdot\left(1+C\left(Y_{3}\right)\right)\right)+\left(X_{2} \cdot C_{\geq 3}\left(X_{1} \cdot L\left(Y_{3}\right)\right)\right) \\
E_{2}\left(\mathcal{A}_{R}\right) & =E_{2}\left(Y_{1}\right)+Y_{2} \cdot Y_{1}=E_{2}\left(Y_{3}\right)-E_{2}\left(Y_{2}\right) \\
\mathcal{A}_{R}^{2} & =Y_{1}^{2}+2 Y_{1} Y_{2}=Y_{3}^{2}-Y_{2}^{2}
\end{aligned}
$$

And then, to remove labels, again bring in cycle index series.

Act IV

Adding color

How to grow a general variety of rooted trees, recursively

- R-enriched rooted trees: $\mathfrak{a}_{R}^{\circ}=\mathcal{A}_{R}=X \cdot R\left(\mathcal{A}_{R^{\prime}}\right)$

Example

How to grow a general variety of rooted trees, recursively

- R-enriched rooted trees: $\mathfrak{a}_{R}^{\bullet}=\mathcal{A}_{R}=X \cdot R\left(\mathcal{A}_{R^{\prime}}\right)$
- R^{\prime}-enriched rooted tree: $\mathcal{A}_{R^{\prime}}=X \cdot R^{\prime}\left(\mathcal{A}_{R^{\prime}}\right)$

Example

How to grow a general variety of rooted trees, recursively

- R-enriched rooted trees: $\mathfrak{a}_{R}^{\bullet}=\mathcal{A}_{R}=X \cdot R\left(\mathcal{A}_{R^{\prime}}\right)$
- R^{\prime}-enriched rooted tree: $\mathcal{A}_{R^{\prime}}=X \cdot R^{\prime}\left(\mathcal{A}_{R^{\prime}}\right)$

Example

Definition (derivative R^{\prime})

Adding c lor

$$
R^{(j)}=\frac{\partial R}{\partial X_{j}}
$$

Adding c lor

$$
\begin{aligned}
R^{(j)} & =\frac{\partial R}{\partial X_{j}} \\
\left(\mathcal{A}_{i}\right)_{R^{(j)}} & =X_{i} R_{i}^{(j)}\left(\left(\left(\mathcal{A}_{1}\right)_{R^{(i)}},\left(\mathcal{A}_{2}\right)_{R^{(i)}}, \ldots,\left(\mathcal{A}_{k}\right)_{R^{(i)}}\right)\right)
\end{aligned}
$$

Adding c lo

$$
\begin{aligned}
R^{(j)} & =\frac{\partial R}{\partial X_{j}} \\
\left(\mathcal{A}_{i}\right)_{R^{(j)}} & =X_{i} R_{i}^{(j)}\left(\left(\left(\mathcal{A}_{1}\right)_{R^{(i)}},\left(\mathcal{A}_{2}\right)_{R^{(i)}}, \ldots,\left(\mathcal{A}_{k}\right)_{R^{(i)}}\right)\right) \\
\mathfrak{a}_{R}^{\bullet i} & =X_{i} R_{i}\left(\left(\left(\mathcal{A}_{1}\right)_{R^{(i)}},\left(\mathcal{A}_{2}\right)_{R^{(i)}}, \ldots,\left(\mathcal{A}_{k}\right)_{R^{(i)}}\right)\right)
\end{aligned}
$$

Example: Vector fields

$$
\begin{aligned}
R_{1}\left(U_{1}, U_{2}\right) & =C\left(U_{1}+U_{2}\right) \\
R_{1}^{(1)}\left(U_{1}, U_{2}\right) & =R_{1}^{(2)}\left(U_{1}, U_{2}\right)=L\left(U_{1}+U_{2}\right) \\
R_{2}\left(U_{1}, U_{2}\right) & =C_{\geq 3}\left(U_{1}\right) \\
R_{2}^{(1)}\left(U_{1}, U_{2}\right) & =L_{\geq 2}\left(U_{1}\right) \\
R_{2}^{(2)}\left(U_{1}, U_{2}\right) & =0
\end{aligned}
$$

Example: Vector fields

$$
\begin{aligned}
R_{1}\left(U_{1}, U_{2}\right) & =C\left(U_{1}+U_{2}\right) \\
R_{1}^{(1)}\left(U_{1}, U_{2}\right) & =R_{1}^{(2)}\left(U_{1}, U_{2}\right)=L\left(U_{1}+U_{2}\right) \\
R_{2}\left(U_{1}, U_{2}\right) & =C_{\geq 3}\left(U_{1}\right) \\
R_{2}^{(1)}\left(U_{1}, U_{2}\right) & =L_{\geq 2}\left(U_{1}\right) \\
R_{2}^{(2)}\left(U_{1}, U_{2}\right) & =0
\end{aligned}
$$

$$
\text { Let } Y_{i, j}=\left(\mathcal{A}_{i}\right)_{R^{(j)}}
$$

Example: Vector fields

$$
\begin{aligned}
R_{1}\left(U_{1}, U_{2}\right) & =C\left(U_{1}+U_{2}\right) \\
R_{1}^{(1)}\left(U_{1}, U_{2}\right) & =R_{1}^{(2)}\left(U_{1}, U_{2}\right)=L\left(U_{1}+U_{2}\right) \\
R_{2}\left(U_{1}, U_{2}\right) & =C_{\geq 3}\left(U_{1}\right) \\
R_{2}^{(1)}\left(U_{1}, U_{2}\right) & =L_{\geq 2}\left(U_{1}\right) \\
R_{2}^{(2)}\left(U_{1}, U_{2}\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } Y_{i, j}=\left(\mathcal{A}_{i}\right)_{R^{(j)}} \\
& \qquad \begin{array}{c}
Y_{1}=Y_{1,1}=Y_{1,2}=X_{1} R_{1}^{(1)}\left(Y_{1,1}, Y_{2,1}\right)=X_{1} L\left(Y_{1,1}+Y_{2,1}\right) \\
Y_{2}=Y_{2,1}=X_{2} R_{2}^{(1)}\left(Y_{1,2}, Y_{2,2}\right)=X_{2} L_{\geq 2}\left(Y_{1,2}\right)
\end{array}
\end{aligned}
$$

Example: Vector fields

$$
\begin{aligned}
R_{1}\left(U_{1}, U_{2}\right) & =C\left(U_{1}+U_{2}\right) \\
R_{1}^{(1)}\left(U_{1}, U_{2}\right) & =R_{1}^{(2)}\left(U_{1}, U_{2}\right)=L\left(U_{1}+U_{2}\right) \\
R_{2}\left(U_{1}, U_{2}\right) & =C_{\geq 3}\left(U_{1}\right) \\
R_{2}^{(1)}\left(U_{1}, U_{2}\right) & =L_{\geq 2}\left(U_{1}\right) \\
R_{2}^{(2)}\left(U_{1}, U_{2}\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } Y_{i, j}=\left(\mathcal{A}_{i}\right)_{R^{(j)}} \\
& \qquad \begin{aligned}
Y_{1}=Y_{1,1}=Y_{1,2} & =X_{1} R_{1}^{(1)}\left(Y_{1,1}, Y_{2,1}\right)=X_{1} L\left(Y_{1,1}+Y_{2,1}\right) \\
& =X_{1} L\left(Y_{1}+Y_{2}\right) \\
Y_{2}=Y_{2,1} & =X_{2} R_{2}^{(1)}\left(Y_{1,2}, Y_{2,2}\right)=X_{2} L_{\geq 2}\left(Y_{1,2}\right) \\
& =X_{2} L_{\geq 2}\left(Y_{1}\right)
\end{aligned}
\end{aligned}
$$

New example

No restriction on black vertices; white vertices have at most one neighbor of each color.

$$
\begin{aligned}
R_{1}\left(U_{1}, U_{2}\right) & =C\left(U_{1}+U_{2}\right) \\
R_{1}^{(1)}\left(U_{1}, U_{2}\right) & =R_{1}^{(2)}\left(U_{1}, U_{2}\right)=L\left(U_{1}+U_{2}\right) \\
R_{2}\left(U_{1}, U_{2}\right) & =\left(1+U_{1}\right)\left(1+U_{2}\right) \\
R_{2}^{(1)}\left(U_{1}, U_{2}\right) & =\left(1+U_{2}\right) \\
R_{2}^{(2)}\left(U_{1}, U_{2}\right) & =\left(1+U_{1}\right)
\end{aligned}
$$

New example

No restriction on black vertices; white vertices have at most one neighbor of each color.

$$
\begin{aligned}
R_{1}\left(U_{1}, U_{2}\right) & =C\left(U_{1}+U_{2}\right) \\
R_{1}^{(1)}\left(U_{1}, U_{2}\right) & =R_{1}^{(2)}\left(U_{1}, U_{2}\right)=L\left(U_{1}+U_{2}\right) \\
R_{2}\left(U_{1}, U_{2}\right) & =\left(1+U_{1}\right)\left(1+U_{2}\right) \\
R_{2}^{(1)}\left(U_{1}, U_{2}\right) & =\left(1+U_{2}\right) \\
R_{2}^{(2)}\left(U_{1}, U_{2}\right) & =\left(1+U_{1}\right) \\
Y_{1}=Y_{1,1}=Y_{1,2} & =X_{1} R_{1}^{(1)}\left(Y_{1,1}, Y_{2,1}\right)=X_{1} L\left(Y_{1}+Y_{2,1}\right) \\
Y_{2,1} & =X_{2} R_{2}^{(1)}\left(Y_{1,2}, Y_{2,2}\right)=X_{2}\left(1+Y_{2,2}\right) \\
Y_{2,2} & =X_{2} R_{2}^{(2)}\left(Y_{1,2}, Y_{2,2}\right)=X_{2}\left(1+Y_{1}\right)
\end{aligned}
$$

New example

No restriction on black vertices; white vertices have at most one neighbor of each color.

$$
\begin{aligned}
R_{1}\left(U_{1}, U_{2}\right) & =C\left(U_{1}+U_{2}\right) \\
R_{1}^{(1)}\left(U_{1}, U_{2}\right) & =R_{1}^{(2)}\left(U_{1}, U_{2}\right)=L\left(U_{1}+U_{2}\right) \\
R_{2}\left(U_{1}, U_{2}\right) & =\left(1+U_{1}\right)\left(1+U_{2}\right) \\
R_{2}^{(1)}\left(U_{1}, U_{2}\right) & =\left(1+U_{2}\right) \\
R_{2}^{(2)}\left(U_{1}, U_{2}\right) & =\left(1+U_{1}\right) \\
Y_{1}=Y_{1,1}=Y_{1,2} & =X_{1} R_{1}^{(1)}\left(Y_{1,1}, Y_{2,1}\right)=X_{1} L\left(Y_{1}+Y_{2,1}\right) \\
Y_{2,1} & =X_{2} R_{2}^{(1)}\left(Y_{1,2}, Y_{2,2}\right)=X_{2}\left(1+Y_{2,2}\right) \\
Y_{2,2} & =X_{2} R_{2}^{(2)}\left(Y_{1,2}, Y_{2,2}\right)=X_{2}\left(1+Y_{1}\right)
\end{aligned}
$$

From this we get the recursive equation for Y_{1} :

$$
Y_{1}=X_{1} L\left(Y_{1}+Y_{2,1}\right)=X_{1} L\left(Y_{1}+X_{2}+X_{2}^{2}+X_{2}^{2} Y_{1}\right)
$$

Dissymmetry, again

Theorem (D.,F.-A.)
$\mathfrak{a}_{R}=\sum_{i}\left(\mathfrak{a}_{R}^{\bullet j}+E_{2}\left(\left(\mathcal{A}_{i}\right)_{R^{(i)}}\right)-\left(\left(\mathcal{A}_{i}\right)_{R^{(i)}}\right)^{2}\right)-\sum_{i<j}\left(\mathcal{A}_{i}\right)_{R^{(j)}} \cdot\left(\mathcal{A}_{j}\right)_{R^{(i)}}$

Dissymmetry, again

Theorem (D.,F.-A.)
$\mathfrak{a}_{R}=\sum_{i}\left(\mathfrak{a}_{R}^{\bullet j}+E_{2}\left(\left(\mathcal{A}_{i}\right)_{R^{(i)}}\right)-\left(\left(\mathcal{A}_{i}\right)_{R^{(i)}}\right)^{2}\right)-\sum_{i<j}\left(\mathcal{A}_{i}\right)_{R^{(j)}} \cdot\left(\mathcal{A}_{j}\right)_{R^{(i)}}$
Example (Vector fields)
$\mathfrak{a}_{R}=Y_{4}+E_{2}\left(Y_{1}\right)-Y_{1}^{2}-Y_{1} \cdot Y_{2}=Y_{4}+E_{2}\left(Y_{1}\right)-Y_{1} Y_{3}$

Dissymmetry, again

Theorem (D.,F.-A.)
$\mathfrak{a}_{R}=\sum_{i}\left(\mathfrak{a}_{R}^{\bullet j}+E_{2}\left(\left(\mathcal{A}_{i}\right)_{R^{(i)}}\right)-\left(\left(\mathcal{A}_{i}\right)_{R^{(i)}}\right)^{2}\right)-\sum_{i<j}\left(\mathcal{A}_{i}\right)_{R^{(j)}} \cdot\left(\mathcal{A}_{j}\right)_{R^{(i)}}$
Example (Vector fields)
$\mathfrak{a}_{R}=Y_{4}+E_{2}\left(Y_{1}\right)-Y_{1}^{2}-Y_{1} \cdot Y_{2}=Y_{4}+E_{2}\left(Y_{1}\right)-Y_{1} Y_{3}$
Proof.
(Sketch) Mostly same as before.

Dissymmetry, again

Theorem (D.,F.-A.)
$\mathfrak{a}_{R}=\sum_{i}\left(\mathfrak{a}_{R}^{\bullet j}+E_{2}\left(\left(\mathcal{A}_{i}\right)_{R^{(i)}}\right)-\left(\left(\mathcal{A}_{i}\right)_{R^{(i)}}\right)^{2}\right)-\sum_{i<j}\left(\mathcal{A}_{i}\right)_{R^{(j)}} \cdot\left(\mathcal{A}_{j}\right)_{R^{(i)}}$
Example (Vector fields)
$\mathfrak{a}_{R}=Y_{4}+E_{2}\left(Y_{1}\right)-Y_{1}^{2}-Y_{1} \cdot Y_{2}=Y_{4}+E_{2}\left(Y_{1}\right)-Y_{1} Y_{3}$
Proof.
(Sketch) Mostly same as before. But the isomorphism between trees rooted at vertex or edge other than the center, with ordered pairs of rooted trees, needs to take into account color.

Act V

Aftermath: Data and Specializations

Data

	1	2	3	4	5	6	7	8	9	10	11	12
0	1	1	1	2	3	6	14	34	95	280	854	2694
1	0	0	1	2	5	16	48	164	559	1952	6872	24520
2	0	0	0	0	1	5	30	146	693	3108	13608	58200
3	0	0	0	0	0	0	2	20	175	1254	7752	44112
4	0	0	0	0	0	0	0	0	7	95	1125	10108
5	0	0	0	0	0	0	0	0	0	0	19	480
6	0	0	0	0	0	0	0	0	0	0	0	0

Data

	1	2	3	4	5	6	7	8	9	10	11	12
0	1	1	1	2	3	6	14	34	95	280	854	2694
1	0	0	1	2	5	16	48	164	559	1952	6872	24520
2	0	0	0	0	1	5	30	146	693	3108	13608	58200
3	0	0	0	0	0	0	2	20	175	1254	7752	44112
4	0	0	0	0	0	0	0	0	7	95	1125	10108
5	0	0	0	0	0	0	0	0	0	0	19	480
6	0	0	0	0	0	0	0	0	0	0	0	0

No white vertices:
Unlabeled plane trees.

Data

	1	2	3	4	5	6	7	8	9	10	11	12
0	1	1	1	2	3	6	14	34	95	280	854	2694
1	0	0	1	2	5	16	48	164	559	1952	6872	24520
2	0	0	0	0	1	5	30	146	693	3108	13608	58200
3	0	0	0	0	0	0	2	20	175	1254	7752	44112
4	0	0	0	0	0	0	0	0	7	95	1125	10108
5	0	0	0	0	0	0	0	0	0	0	19	480
6	0	0	0	0	0	0	0	0	0	0	0	0

No white vertices:
Unlabeled plane trees.
Minimal black vertices:
Unlabeled 3-gonal cacti with n triangles.
(Bóna, Bousquet, Labelle, Leroux, 2000)

One white vertex

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	0	1	2	5	16	48	164	559	1952	6872	24520

Triangulations of an n-gon with exactly one internal vertex.
(Brown, 1964)

One white vertex

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	0	1	2	5	16	48	164	559	1952	6872	24520

Triangulations of an n-gon with exactly one internal vertex.
(Brown, 1964)

Both are circular orders of (at least three) Catalan-things (ordered rooted trees or rooted triangulations).

