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OVERVIEW

• shifted complexes

• algebraic shifting

– symmetric, exterior

– iterated Betti numbers

∗ characterizations

∗ decompositions

• Laplacians

– shifted complexes and matroids

– recursion
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WHY ALGEBRAIC SHIFTING?

It maps a simplicial complex Γ to a shifted

simplicial complex ∆(Γ), such that:

• many algebraic, topological invariants pre-

served; and

• ∆(Γ) is shifted, so

– ∆(Γ) is combinatorially simpler; and

– those algebraic and topological invari-

ants are easily computed from the com-

binatorics of ∆(Γ).

Example (Björner-Kalai ’88): To character-

ize possible pairs of f-vectors and (homology)

Betti numbers of simplicial complexes, alge-

braically shift, preserving f and Betti’s. Betti’s

are now easy to read: facets that don’t contain

vertex 1.
3



SHIFTED COMPLEXES

Defn: A simplicial complex Γ on ordered vertex

set [n] = {1, . . . , n} is shifted if

F ∈ Γ, v′ < v ⇒ (F − v) ∪̇ v′ ∈ Γ.

Examples:
123 134 234 17
124 135 235 46
125 136 236
126 145
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Equivalently, Γ is an order ideal in the com-

ponentwise partial order on ordered subsets of

[n].
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NEAR-CONES (Björner-Kalai)

∆′ ∪̇B any simplicial complex

B some facets (boundary of B in ∆′)
near-cone ∆ = (v ∗∆′) ∪̇B, v apex

(Alternatively: v ∗ (∆′ ∪̇B)− “v ∗B”)

Homology Betti numbers easy to compute:

β̃i(∆) := dim H̃i(∆) = #Bi

(facets of each dimension, not containing ver-

tex 1).

Examples:v
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Betti numbers (1,1,0) and (0,0,0).
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SHIFTED IS ITERATED NEAR-CONE

∆ = 1 ∗
∆′︷ ︸︸ ︷

((2 ∗ ((3 ∗∆′′′) ∪̇B2)︸ ︷︷ ︸
∆′′

∪̇B1) ∪̇B0

Example:

∆′′′ = {∅}
∆′′ = 3 ∗∆′′′ ∪̇ {4,5,6}
∆′ = 2 ∗∆′′ ∪̇ {34,35,36,45,7}
∆ = 1 ∗∆′ ∪̇ {234,235,236,46}

123 134 234
124 135 235
125 136 236
126 145 46

17
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SHIFTED ⇒ SHELLABLE

Shelling is a way to build a simplicial complex

one facet at a time, so that as each facet F

is added, a unique new minimal face R(F ) is

added. Therefore ∆ = ∪̇s[R(Fs), Fs]. For a

shellable complex (Björner-Wachs ’96),

hi,r(∆) = #{facets F : |R(F )| = r, |F | = i}.

A shifted complex has a canonical shelling, by

arranging facets in lexicographic order. In this

shelling, R(F ) = F − [init(F )]. Thus, for a

shifted complex,

hi,r(∆) = #{facets F : init(F ) = i−r, |F | = i}.

Example: 123 134 234 17
124 135 235 46
125 136 236
126 145
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ALGEBRAIC SHIFTING (Kalai)

Map simplicial complex Γ to new simplicial com-
plex ∆e(Γ).

Exterior version Stanley-Reisner face-ring:

xF := ∧i∈Fxi
IΓ := 〈xF : F 6∈ Γ〉

Λ[Γ] := Λ[x1, . . . , xn]/IΓ

yj := αj1x1 + αj2x2 + · · ·+ αjnxn,

where αij’s “generic” (for instance, added al-
gebraically indpt. variables). Define ∆(e) by:

F ∈∆e(Γ)⇔ yF 6∈ span{yG : G <lex F} in Λ[Γ]

Equivalently,

I∆e(Γ) = Ginrevlex(IΓ) = inrevlex(gIΓ),

where g is “generic” in GL(n).

(Gin is generic initial ideal, and in is initial ideal,
from Gröbner basis theory.)
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SYMMETRIC ALGEBRAIC SHIFTING

(Kalai ’91, but also recent papers by Herzog,

et. al.)

Use ordinary (commutative) Stanley-Reisner face-

ring, and then, almost as before,

I∆s(Γ) = φGinrevlex(IΓ),

where φ is the “squarefree” operator, e.g.,

φ(y4y
3
6y7) = φ(y4y6y6y6y7)

= y4−4y6−3y6−2y6−1y7−0 = y0y3y4y5y7

This is of interest for graded ideals other than

IΓ (i.e., not squarefree), without applying φ. In

other words Ginrevlex is an interesting operator

on arbitrary graded ideals. “Strongly stable”

ideal is commutative algebra version of shifted

complex, and Gin(I) is strongly stable.
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“AXIOMS” OF ALGEBRAIC SHIFTING

1. ∆(Γ) is a shifted simplicial complex;

2. Γ′ ⊆ Γ⇒∆(Γ′) ⊆∆(Γ);

3. f(Γ) = f(∆(Γ)), β̃(Γ) = β̃(∆(Γ));

4. Cone(∆(Γ)) = ∆(Cone(Γ));

5. Γ shifted ⇒∆(Γ) = Γ;

6. Γ Cohen-Macaulay iff ∆(Γ) CM (note that

a shifted complex is CM iff it is pure).

(Note: 5 follows from the previous properties!)

Example: Alg. shift triangular bipyramid.
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ITERATED BETTI NUMBERS

Algebraic version of deconing of shifted com-

plexes. Exterior (D-Rose ’00; earlier version

Kalai) or symmetric (Babson-Novik-Thomas).

Take homology (exterior) or local cohomol-

ogy (symmetric) of exterior or symmetric face-

ring using the first generic variable, then alge-

braically “peel off” that variable. Repeat until

there’s nothing left. The iterated Betti num-

bers are the dimensions of homology or local

cohomology at each step.

Equivalently, read the iterated Betti numbers

of ∆(Γ):

bi,r(Γ) = hi,r(∆(Γ))

= #{facets F : init(F ) = i− r, |F | = i}.

F = {1,2, . . . , i− r; k1, . . . , kr}
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ALGEBRAIC BETTI NUMBERS

βi,j(Γ), invariants of minimal free resolution of
k[Γ] over S:

0→ Ft → · · · → F1 → S1 → k[Γ]→ 0

Fi =
⊕
j

S(−j)βi,j

It was long known that algebraic Betti num-
bers, in addition to being important in and of
themselves, determine many interesting invari-
ants of k[Γ] (equivalently, Γ):

• Krull dimension (1 + dim Γ);

• Hilbert series (f-vector);

• homological dimension;

• regularity;

• depth; and

• topological Betti numbers of Γ.
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EXTREMAL NUMBERS

Extremal algebraic Betti numbers (Bayer-

Charalambous-Popescu ’99): βi,j 6= 0, can’t

make i or j − i bigger, without making β = 0.

(Southeast corner of Macaulay diagram.)

Easy to show these are enough to find invari-

ants of previous slide, except for the Hilbert

series (f-vector).

Extremal symmetric iterated Betti num-

bers (BNT): bsi,r(Γ) = hi,r(∆s(Γ)) 6= 0, can’t

make i smaller, or r bigger, without making

b = 0. (Recall this counts facets F = [i−r] ∪̇R
in ∆s(Γ), with |F | = i, |R| = r).

Thm (BNT): Extremal symmetric iterated Betti

numbers determine the extremal algebraic Betti

numbers.
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CHARACTERIZING INVARIANTS

Characterize those many invariants of all sim-

plicial complexes.

reduced to

Characterize extremal h-numbers (or, “init”

data) of all shifted complexes.

extremal h (or, “init”) of ∆s(Γ)

→ extremal symm. iterated Bettis of Γ

→ extremal Betti numbers of Γ

→ various invariants of Γ

Extremal: hi,r 6= 0, can’t make i smaller, or

r bigger, without making h = 0. (Recall this

counts facets F = [i−r] ∪̇R, with |F | = i, |R| =
r).
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DECOMPOSITIONS: COHEN-MACAULAY

COMPLEXES

Conj (Stanley ’79, Garsia ’80): If ∆ is Cohen-

Macaulay, then it may be partitioned

∆ = ∪̇s[Rs, Fs]

([Rs, Fs] denotes a Boolean interval) where each

Fs is a facet of ∆, and so

hj(∆) = #{s : |Rs| = j}.

For a pure shellable complex,

hj(∆) = hd,j(∆) = #{facets F : |R(F )| = j}.
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DECOMPOSITIONS: ALL COMPLEXES

Conj (Kalai ’93): If

∆e(Γ) = ∪̇s[Fs, Gs]
is a “nice” partition of ∆(Γ), then there is a
partition

Γ = ∪̇s[As, Bs]

where

dimAs = dimFs, dimBs = dimGs.

“Nice” includes the canonical shelling of a shifted
complex, where R(F ) = F − [init(F )], so

Conj (D-Zhang ’01): Any simplicial complex Γ
can be partitioned

Γ = ∪̇s[As, Bs]
where

#{s : |As| = j, |Bs| = i} = hi,j(∆e(Γ)) = bei,j(Γ).

Prop DZ ⇒ Garsia-Stanley
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BOOLEAN TREES
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Thm (D-Zhang): Any simplicial complex Γ can
be partitioned Γ = ∪̇sTs, where each Ts is a
Boolean tree, and

#{s : |min(Ts)| = j, |max(Ts)| = i} = bei,j(K).

Cor: If ∆ is Cohen-Macaulay, then it may
be partitioned ∆ = ∪̇Ts, where each Ts is a
Boolean tree whose maximal element is a facet
of ∆, and

#{s : |min(Ts)| = j} = hj(∆).

Question: How much of this can we repeat for
symmetric iterated Betti’s? Especially since
Cohen-Macaulay is defined in symmetric (com-
mutative) algebra. Note BNT conjecture: bsi,j ≤
bei,j.
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LAPLACIANS

Ci = CΓi, the i-dimensional R-chains of Γ
(R-linear combinations of i-dim’l faces of Γ)

∂ = ∂i : Ci → Ci−1 usual signed boundary
δi−1 = ∂∗i : Ci−1 → Ci coboundary.

Ci+1
∂


∂∗
Ci

∂


∂∗
Ci−1

Defn: i-dimensional Laplacian of Γ:

Li(Γ) = ∂i+1∂
∗
i+1 + ∂∗i ∂i : Ci → Ci
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Easy observations about s, eigenvalues

s(Li) = s(∂i+1∂
∗
i+1) ∪ s(∂∗i ∂i)

s(∂∗i ∂i) = s(∂i∂
∗
i ), except for 0’s, and number

of 0 eigenvalues is ith Betti number.
So we may as well just consider s′′i = s(∂∗i ∂i),
which only depends on Ci.
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DEGREE SEQUENCES

Defn: di is the i-dimensional degree sequence
(di)j = # i-faces containing vertex j.

Example:
123 134 234
124 135 235
125 136 236
126 145

8
7
7
4
4
3

s′′ = (6,6,6,5,3,3,3,1,0,0,0)

Thm (D-Reiner ’02): If a simplicial complex is
shifted, then

s′′i = (di)
T .

Also integral for

• matroids (Kook-Reiner-Stanton ’00)

• chessboard complexes (Friedman-Hanlon ’98)

• matching complexes of Kn (Dong-Wachs
’02).
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MATROIDS AND SHIFTED COMPLEXES

Both: collection of subsets of ground set E =
{1, . . . , n}.

Matroid bases B: ∀B ∈ B, ∀b ∈ B
∀B′ ∈ B, ∃b′ ∈ B′ such that

(B − b) ∪ b′ ∈ B.

Shifted family K: ∀F ∈ K, ∀v ∈ F
∀v′ < v, if v′ 6∈ F, then

(F − v) ∪ v′ ∈ K.

Independence complex IN(M) of matroid M is
simplicial complex of subsets of bases (these
are the independent sets).

Simplicial complex ∆ is shifted if it is shifted
in every dimension. Note that taking all sub-
sets of the members of a shifted family gives
a shifted simplicial complex.
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SPECTRAL RECURSION FOR
MATROIDS. . .

SM(t, q) :=
∑
i

ti
∑

λ∈s(Li−1(IN(M)))

qλ

Tutte-Grothendieck invariants have a deletion-
contraction recursion:

φ(M) = φ(M − e) + φ(M/e)

B(M − e) = {B ∈ B : e 6∈ B} (r = r(M))

B(M/e) = {B − e : B ∈ B, e ∈ B} (r = (M)− 1)

Thm (Kook): SM = qSM−e + qtSM/e
+(1− q)(error term).

Conj (Kook-Reiner): error term = S(M−e,M/e),
where (M − e,M/e) = (IN(M − e), IN(M/e)) is
the “relative complex” of IN(M − e) with all
the faces from IN(M/e) removed.

Thm: This is true, i.e.,

SM = qSM−e + qtSM/e + (1− q)S(M−e,M/e).
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. . . AND FOR SHIFTED COMPLEXES

Generalize deletion and contraction to arbi-

trary simplicial complex Γ.

Γ− e = {F ∈ Γ: e 6∈ F}
Γ/e = {F − e : F ∈ Γ, e ∈ F} = lkΓ e

A
A
A
A
u
u u
u

u u
u
u uu

u
u

u
u

u

u

u
�
�
�
�
�
��

@
@

�
�
�
�
A
A
A
A

�
�
�
�
�
��

@
@

u
�
�
�
�
�
�

A
A
A
A

Q
Q
Q
Q
Q
Q
�
�
�
�

@
@
�
�
�
�

Q
Q
Q
Q

Q
Q

Q
Q
Q

Q
Q
Q
�
�

�
�
C
C
C
C
C
C
C
C

��
�
�

�
�

B
B
B
B
B
BB

�
�
�
�

��
��
��@

@

A
A
A
A

XXX
XXX

XX

J
J
J
J
J
JJ

��
�
�

�
�
�
�

SΓ(t, q) :=
∑
i

ti
∑

λ∈s(Li−1(Γ))

qλ

Thm: Spectral recursion holds for shifted com-

plexes ∆:

S∆ = qS∆−e + qtS∆/e + (1− q)S(∆−e,∆/e).
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COMMON GENERALIZATION?

What else has integral Laplacian spectrum, and

satisfies the spectral recursion? Call such com-

plexes integral, and spectral, respectively.

Defn: join Γ1 ∗ Γ2 = {F1 ∪̇ F2 : Fi ∈ Γi}
Thm: If Γ1 and Γ2 are integral (resp., spec-

tral), then so is Γ1 ∗ Γ2.

disjoint union

Thm: If Γ1 and Γ2 are integral (resp., spec-

tral), then so is Γ1 ∪̇ Γ2.

Defn: i-skeleton Γ(i) := {F ∈ Γ: dimF ≤ i}.
Thm: If Γ is integral (resp., spectral), then so

is Γ(i), for every i.
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DUALS

Recall matroid dual: B∗ = {E −B : B ∈ B}.

Defns: dual Γ∗ := {E − F : F ∈ Γ} (simplicial
complex ↔ order filter)

complement Γc = {F ⊆ E : F 6∈ Γ} (simplicial
complex ↔ order filter)

Alexander dual Γ∨ := Γ∗c = Γc∗ (simplicial
complex ↔ simplicial complex)

Thm: Γ integral (resp., spectral) iff Γ∗ integral
(resp., spectral) iff Γc integral (resp., spectral).

(modify spectral recursion, slightly, for order
filters:

SΓ∗ = qSΓ∗−e + qtSΓ∗/e + (1− q)tS(Γ∗/e,Γ∗−e))

Cor: Γ integral (resp., spectral) iff Γ∨ is.

Rmk: Γ is shifted iff Γ∨ is
24


