The surprising similarity of shifted simplicial complexes and matroids

Art Duval

University of Texas at El Paso

Stanley@70 MIT June 24, 2014

Art Duval Surprising similarity of shifted complexes and matroids

直 ト イヨ ト イヨ ト

Shifted simplicial complexes and (the independence complexes) of matroids have many similarities:

- Definitions are somewhat similar.
- ▶ Both closed under deletion and contraction.
- Eigenvalues of combinatorial Laplacians are integers (pretty rare).
- Eigenvalues satisfy same recursion (different proofs).

Question

Is there a (nice) common generalization of shifted complexes and matroids?

- 同 ト - ヨ ト - - ヨ ト

Shifted simplicial complexes

Definition

A non-empty family \mathcal{K} of k-subsets of ground set $E = \{1, \ldots, n\}$ is shifted if: $\forall F \in \mathcal{K}, \ \forall v \in F, \ \forall v' < v, \ \text{if } v' \notin F, \ \text{then}$

$$(F-v)\cup v'\in \mathcal{K}.$$

Example

123, 124, 125, 126, 134, 135, 136, 145, 234, 235, 236.

Definition

A simplicial complex is shifted if its family of *i*-dimensional faces is shifted, for all *i*.

Remark

The simplicial complex formed by taking all subsets of every set $F \in \mathcal{K}$ is a pure shifted simplicial complex.

Independence complexes of matroids

Definition

Matroid can be defined by its bases: A non-empty family \mathcal{B} of *k*-subsets of ground set $E = \{1, \ldots, n\}$ satisfying: $\forall B \in \mathcal{B}, \forall b \in B, \forall B' \in \mathcal{B}, \exists b' \in B'$ such that

$$(B-b)\cup b'\in \mathcal{B}.$$

Example

If G is a graph, then the bases of M(G) are spanning trees.

Definition

The independence complex IN(M) of M is the simplicial complex formed by taking all subsets of every base $B \in \mathcal{B}$, i.e., the independent sets IN(M) of matroid M.

- 4 同 6 4 日 6 4 日 6

Deletion and contraction

Motivated by the independent sets of a graph after deleting, or contracting, an edge of the graph.

Definition

$$IN(M - e) = \{I \in IN(M) : e \notin I\}$$
$$IN(M/e) = \{I - e : I \in IN(M), e \in I\}$$

< ∃ →

Deletion and contraction

Motivated by the independent sets of a graph after deleting, or contracting, an edge of the graph. But it can also be done for any simplicial complex.

Definition

$$egin{array}{lll} \Delta-e=\{F\in\Delta\colon e
ot\in F\}\ \Delta/e=\{F-e\colon F\in\Delta,\ e\in F\}\end{array}$$

124, 125, 126, 145 123, 134, 135, 136, 234, 235, 236

Combinatorics Definitions Deletion-contraction

Tutte recursion

 $124, 125, 126, 145\\123, 134, 135, 136, 234, 235, 236$

Fact (easy)

Matroids, and shifted complexes, are closed under deletion and contraction.

・ 同 ト ・ ヨ ト ・ ヨ

э

Combinatorics Algebra Definitions Deletion-contraction

Tutte recursion

 $124, 125, 126, 145\\123, 134, 135, 136, 234, 235, 236$

Fact (easy)

Matroids, and shifted complexes, are closed under deletion and contraction.

Remark Tutte polynomial satisfies:

$$T_M = T_{M-e} + T_{M/e}$$

and many matroid invariants are evaluations of the Tutte polynomial

/□ ▶ < 글 ▶ < 글

Laplacians

Definition

- ► $L_i^{du} = \partial_i^T \partial_i : C_i \to C_i$, down-up Laplacian
- ► $L_i^{ud} = \partial_{i+1} \partial_{i+1}^T$: $C_i \to C_i$, up-down Laplacian
- ▶ $L_i^{tot} = L_i^{du} + L_i^{ud}$: $C_i \to C_i$, total Laplacian

where $\partial_i : C_i(\Delta) \to C_{i-1}(\Delta)$ is the usual signed boundary map.

Laplacians

Definition

- ► $L_i^{du} = \partial_i^T \partial_i : C_i \to C_i$, down-up Laplacian
- ▶ $L_i^{ud} = \partial_{i+1} \partial_{i+1}^T$: $C_i \to C_i$, up-down Laplacian
- ► $L_i^{tot} = L_i^{du} + L_i^{ud}$: $C_i \to C_i$, total Laplacian

where $\partial_i : C_i(\Delta) \to C_{i-1}(\Delta)$ is the usual signed boundary map.

Remark

Can get eigenvalues (in all dimensions) of any one of these from any other of them (basic linear algebra)

A (B) A (B) A (B) A

Eigenvalues

Theorem (D.-Reiner, '02; Kook-Reiner-Stanton, '00) Laplacian eigenvalues of shifted complexes, and matroids, are integers, and there are nice formulas

Remark

Very few other examples of integer Laplacian eigenvalues.

(人間) ト く ヨ ト く ヨ ト

Eigenvalues

Theorem (D.-Reiner, '02; Kook-Reiner-Stanton, '00) Laplacian eigenvalues of shifted complexes, and matroids, are integers, and there are nice formulas

Remark

Very few other examples of integer Laplacian eigenvalues.

Remark

We can also do all this for relative complexes (shifted complexes: same vertex ordering; matroids: strong map), e.g., $(\Delta - e, \Delta/e)$.

Spectral recursion

Definition

Spectral polynomial $S_{\Delta}(q, t)$ is a generating function of Laplacian eigenvalues of a simplicial complex Δ .

Theorem (D., '05)

Both shifted complexes, and matroids, satisfy the spectral recursion:

$$S_{\Delta} = qS_{\Delta-e} + qtS_{\Delta/e} + (1-q)S_{(\Delta-e,\Delta/e)}$$

Remark

Proof for shifted complexes totally different from proof for matroids.

- 4 同 6 4 日 6 4 日 6

mbinatorics Algebra Spectral recursion

Weighted version?

Question

How much of this setup works with the following weighted boundary matrix?

	1 <mark>2</mark> 3	124	12 5	134	<mark>2</mark> 34
12	+3	+4	+5	0	0
13	-2	0	0	+4	0
14	0	-2	0	-3	0
1 5	0	0	-2	0	0
23	+1	0	0	0	+4
24	0	+1	0	0	-3
25	0	0	+1	0	0
34	0	0	0	+1	+2

Remark (D.-Klivans-Martin, '09)

Weighted Laplacian eigenvalues of shifted complexes are nice.

イロン 不同 とくほう イロン

3

Question

What else satisfies all of these?:

- Closed under deletion and contraction
- Integer Laplacian eigenvalues
- Satisfy spectral recursion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Question

What else satisfies all of these?:

- Closed under deletion and contraction
- Integer Laplacian eigenvalues
- Satisfy spectral recursion

Remark

3-edge path does not have integer Laplacian eigenvalues.

伺 ト イ ヨ ト イ ヨ ト

Question

What else satisfies all of these?:

- Closed under deletion and contraction
- Integer Laplacian eigenvalues
- Satisfy spectral recursion

Remark

3-edge path does not have integer Laplacian eigenvalues.

Happy (birth+1)day, Richard!

- 同 ト - ヨ ト - - ヨ ト