The surprising similarity of shifted simplicial complexes and matroids

Art Duval
University of Texas at El Paso

Stanley@70
MIT
June 24, 2014

Summary

Shifted simplicial complexes and (the independence complexes) of matroids have many similarities:

- Definitions are somewhat similar.
- Both closed under deletion and contraction.
- Eigenvalues of combinatorial Laplacians are integers (pretty rare).
- Eigenvalues satisfy same recursion (different proofs).

Question

Is there a (nice) common generalization of shifted complexes and matroids?

Shifted simplicial complexes

Definition

A non-empty family \mathcal{K} of k-subsets of ground set $E=\{1, \ldots, n\}$ is shifted if: $\forall F \in \mathcal{K}, \forall v \in F, \forall v^{\prime}<v$, if $v^{\prime} \notin F$, then

$$
(F-v) \cup v^{\prime} \in \mathcal{K} .
$$

Example
123, 124, 125, 126, 134, 135, 136, 145, 234, 235, 236.
Definition
A simplicial complex is shifted if its family of i-dimensional faces is shifted, for all i.

Remark

The simplicial complex formed by taking all subsets of every set
$F \in \mathcal{K}$ is a pure shifted simplicial complex.

Independence complexes of matroids

Definition

Matroid can be defined by its bases: A non-empty family \mathcal{B} of k-subsets of ground set $E=\{1, \ldots, n\}$ satisfying:
$\forall B \in \mathcal{B}, \forall b \in B, \forall B^{\prime} \in \mathcal{B}, \exists b^{\prime} \in B^{\prime}$ such that

$$
(B-b) \cup b^{\prime} \in \mathcal{B} .
$$

Example
If G is a graph, then the bases of $M(G)$ are spanning trees.
Definition
The independence complex $\operatorname{IN}(M)$ of M is the simplicial complex formed by taking all subsets of every base $B \in \mathcal{B}$, i.e., the independent sets $\operatorname{IN}(M)$ of matroid M.

Deletion and contraction

Motivated by the independent sets of a graph after deleting, or contracting, an edge of the graph.

Definition

$$
\begin{aligned}
\operatorname{IN}(M-e) & =\{I \in \operatorname{IN}(M): e \notin I\} \\
\operatorname{IN}(M / e) & =\{I-e: I \in \operatorname{IN}(M), e \in I\}
\end{aligned}
$$

Example

Deletion and contraction

Motivated by the independent sets of a graph after deleting, or contracting, an edge of the graph. But it can also be done for any simplicial complex.

Definition

$$
\begin{aligned}
\Delta-e & =\{F \in \Delta: e \notin F\} \\
\Delta / e & =\{F-e: F \in \Delta, e \in F\}
\end{aligned}
$$

Example

124, 125, 126, 145
$123,134,135,136,234,235,236$

Tutte recursion

124, 125, 126, 145
$123,134,135,136,234,235,236$
Fact (easy)
Matroids, and shifted complexes, are closed under deletion and contraction.

Tutte recursion

124, 125, 126, 145
123, 134, 135, 136, 234, 235, 236
Fact (easy)
Matroids, and shifted complexes, are closed under deletion and contraction.

Remark
Tutte polynomial satisfies:

$$
T_{M}=T_{M-e}+T_{M / e}
$$

and many matroid invariants are evaluations of the Tutte polynomial

Laplacians

Definition

- $L_{i}^{d u}=\partial_{i}^{T} \partial_{i}: C_{i} \rightarrow C_{i}$, down-up Laplacian
- $L_{i}^{u d}=\partial_{i+1} \partial_{i+1}^{T}: C_{i} \rightarrow C_{i}$, up-down Laplacian
- $L_{i}^{\text {tot }}=L_{i}^{d u}+L_{i}^{\text {ud }}: C_{i} \rightarrow C_{i}$, total Laplacian
where $\partial_{i}: C_{i}(\Delta) \rightarrow C_{i-1}(\Delta)$ is the usual signed boundary map.

Laplacians

Definition

- $L_{i}^{d u}=\partial_{i}^{T} \partial_{i}: C_{i} \rightarrow C_{i}$, down-up Laplacian
- $L_{i}^{u d}=\partial_{i+1} \partial_{i+1}^{T}: C_{i} \rightarrow C_{i}$, up-down Laplacian
- $L_{i}^{\text {tot }}=L_{i}^{d u}+L_{i}^{u d}: C_{i} \rightarrow C_{i}$, total Laplacian
where $\partial_{i}: C_{i}(\Delta) \rightarrow C_{i-1}(\Delta)$ is the usual signed boundary map.

Remark

Can get eigenvalues (in all dimensions) of any one of these from any other of them (basic linear algebra)

Eigenvalues

Theorem (D.-Reiner, '02; Kook-Reiner-Stanton, '00)
Laplacian eigenvalues of shifted complexes, and matroids, are integers, and there are nice formulas

Remark
Very few other examples of integer Laplacian eigenvalues.

Eigenvalues

Theorem (D.-Reiner, '02; Kook-Reiner-Stanton, '00)
Laplacian eigenvalues of shifted complexes, and matroids, are integers, and there are nice formulas

Remark
Very few other examples of integer Laplacian eigenvalues.

Remark

We can also do all this for relative complexes (shifted complexes:
same vertex ordering; matroids: strong map), e.g., ($\Delta-e, \Delta / e)$.

Spectral recursion

Definition

Spectral polynomial $S_{\Delta}(q, t)$ is a generating function of Laplacian eigenvalues of a simplicial complex Δ.

Theorem (D., '05)
Both shifted complexes, and matroids, satisfy the spectral recursion:

$$
S_{\Delta}=q S_{\Delta-e}+q t S_{\Delta / e}+(1-q) S_{(\Delta-e, \Delta / e)}
$$

Remark

Proof for shifted complexes totally different from proof for matroids.

Weighted version?

Question

How much of this setup works with the following weighted boundary matrix?

	123	124	125	134	234
12	+3	+4	+5	0	0
13	-2	0	0	+4	0
14	0	-2	0	-3	0
15	0	0	-2	0	0
23	+1	0	0	0	+4
24	0	+1	0	0	-3
25	0	0	+1	0	0
34	0	0	0	+1	+2

Remark (D.-Klivans-Martin, '09)
Weighted Laplacian eigenvalues of shifted complexes are nice.

Summary

Question

What else satisfies all of these?:

- Closed under deletion and contraction
- Integer Laplacian eigenvalues
- Satisfy spectral recursion

Summary

Question

What else satisfies all of these?:

- Closed under deletion and contraction
- Integer Laplacian eigenvalues
- Satisfy spectral recursion

Remark

3-edge path does not have integer Laplacian eigenvalues.

Summary

Question

What else satisfies all of these?:

- Closed under deletion and contraction
- Integer Laplacian eigenvalues
- Satisfy spectral recursion

Remark

3-edge path does not have integer Laplacian eigenvalues.

Happy (birth+1)day, Richard!

