What is 0°, and who decides, and why does it matter?:
The role of definitions in mathematics

Art Duval
Department of Mathematical Sciences
University of Texas at El Paso

STEM Education Research Seminar
University of Texas at El Paso November 13, 2020

Disclaimers

- This is not really a mathematics talk

Disclaimers

- This is not really a mathematics talk
- This is not really an education research talk

Disclaimers

- This is not really a mathematics talk
- This is not really an education research talk
- But let me know if it gives you an educational research idea

Disclaimers

- This is not really a mathematics talk
- This is not really an education research talk
- But let me know if it gives you an educational research idea
- I will focus on what it means for teaching mathematics

Disclaimers

- This is not really a mathematics talk
- This is not really an education research talk
- But let me know if it gives you an educational research idea
- I will focus on what it means for teaching mathematics
- My bias is towards college-level

Disclaimers

- This is not really a mathematics talk
- This is not really an education research talk
- But let me know if it gives you an educational research idea
- I will focus on what it means for teaching mathematics
- My bias is towards college-level
- But I will try to stick to high school and middle school-level

Definitions as foundation of mathematics

- In class, definitions have to come first

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof
- This is how we do math

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof
- This is how we do math
- Prove theorems, analyze functions, solve equations, etc.

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof
- This is how we do math
- Prove theorems, analyze functions, solve equations, etc.
- In class, we might often say, "Let's look up the definition"

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof
- This is how we do math
- Prove theorems, analyze functions, solve equations, etc.
- In class, we might often say, "Let's look up the definition"
- Example: Is 0 an even number?

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof
- This is how we do math
- Prove theorems, analyze functions, solve equations, etc.
- In class, we might often say, "Let's look up the definition"
- Example: Is 0 an even number?
- Even number: $n=2 k$, where k is an integer

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof
- This is how we do math
- Prove theorems, analyze functions, solve equations, etc.
- In class, we might often say, "Let's look up the definition"
- Example: Is 0 an even number?
- Even number: $n=2 k$, where k is an integer
- $0=2 \times 0$

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof
- This is how we do math
- Prove theorems, analyze functions, solve equations, etc.
- In class, we might often say, "Let's look up the definition"
- Example: Is 0 an even number?
- Even number: $n=2 k$, where k is an integer
- $0=2 \times 0$
- Is 0 an integer?

Definitions as foundation of mathematics

- In class, definitions have to come first
- Definition-theorem-proof
- This is how we do math
- Prove theorems, analyze functions, solve equations, etc.
- In class, we might often say, "Let's look up the definition"
- Example: Is 0 an even number?
- Even number: $n=2 k$, where k is an integer
- $0=2 \times 0$
- Is 0 an integer?
- Yes

Mathematicians in the real world

- "Mathematician" includes all of us here

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?
- Jury deciding DWI case:

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?
- Jury deciding DWI case:
- what's the definition of "intoxicated" (Jim Propp)

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?
- Jury deciding DWI case:
- what's the definition of "intoxicated" (Jim Propp)
- "Is water wet?"

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?
- Jury deciding DWI case:
- what's the definition of "intoxicated" (Jim Propp)
- "Is water wet?"
- "Are you short of breath while exercising?"

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?
- Jury deciding DWI case:
- what's the definition of "intoxicated" (Jim Propp)
- "Is water wet?"
- "Are you short of breath while exercising?"
- Homeless (federal government definition has changed!)

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?
- Jury deciding DWI case:
- what's the definition of "intoxicated" (Jim Propp)
- "Is water wet?"
- "Are you short of breath while exercising?"
- Homeless (federal government definition has changed!)
- Middle-class (economics, politics)

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?
- Jury deciding DWI case:
- what's the definition of "intoxicated" (Jim Propp)
- "Is water wet?"
- "Are you short of breath while exercising?"
- Homeless (federal government definition has changed!)
- Middle-class (economics, politics)
- Obscenity ("I know it when I see it" -Justice Potter Stewart)

Mathematicians in the real world

- "Mathematician" includes all of us here
- Do you ever answer a question by "Define ..."?
- Jury deciding DWI case:
- what's the definition of "intoxicated" (Jim Propp)
- "Is water wet?"
- "Are you short of breath while exercising?"
- Homeless (federal government definition has changed!)
- Middle-class (economics, politics)
- Obscenity ("I know it when I see it"-Justice Potter Stewart)
- Dependent (taxes)

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford
- MAA column about mathematical thinking

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford
- MAA column about mathematical thinking
- consulting for federal government about national security, post-9/11

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford
- MAA column about mathematical thinking
- consulting for federal government about national security, post-9/11
- task: "look at ways that reasoning and decision making are influenced by the context in which data arises"

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford
- MAA column about mathematical thinking
- consulting for federal government about national security, post-9/11
- task: "look at ways that reasoning and decision making are influenced by the context in which data arises"
- approaches like a mathematician

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford
- MAA column about mathematical thinking
- consulting for federal government about national security, post-9/11
- task: "look at ways that reasoning and decision making are influenced by the context in which data arises"
- approaches like a mathematician
- step 1: "write down as precise a mathematical definition as possible of what a context is"

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford
- MAA column about mathematical thinking
- consulting for federal government about national security, post-9/11
- task: "look at ways that reasoning and decision making are influenced by the context in which data arises"
- approaches like a mathematician
- step 1: "write down as precise a mathematical definition as possible of what a context is"
- Presentation never got past first slide with that definition

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford
- MAA column about mathematical thinking
- consulting for federal government about national security, post-9/11
- task: "look at ways that reasoning and decision making are influenced by the context in which data arises"
- approaches like a mathematician
- step 1: "write down as precise a mathematical definition as possible of what a context is"
- Presentation never got past first slide with that definition
- Entire room spent all his time discussing that definition

Keith Devlin proves his worth - with a definition

- Keith Devlin, Stanford
- MAA column about mathematical thinking
- consulting for federal government about national security, post-9/11
- task: "look at ways that reasoning and decision making are influenced by the context in which data arises"
- approaches like a mathematician
- step 1: "write down as precise a mathematical definition as possible of what a context is"
- Presentation never got past first slide with that definition
- Entire room spent all his time discussing that definition
- "That one slide justified having you on the project"

Who decide definitions in mathematics?

- Cody Patterson on Facebook: "I think that in his first 100 days President Biden should issue an executive order stipulating that 0^{0} is defined to be 1 , and the exponential rule for limits (that $\lim _{x \rightarrow a} b^{x}=b^{a}$) only holds when $b>0$ "

Who decide definitions in mathematics?

- Cody Patterson on Facebook: "I think that in his first 100 days President Biden should issue an executive order stipulating that 0^{0} is defined to be 1 , and the exponential rule for limits (that $\lim _{x \rightarrow a} b^{x}=b^{a}$) only holds when $b>0$ "
- But why does this take an executive order?

Who decide definitions in mathematics?

- Cody Patterson on Facebook: "I think that in his first 100 days President Biden should issue an executive order stipulating that 0^{0} is defined to be 1 , and the exponential rule for limits (that $\lim _{x \rightarrow a} b^{x}=b^{a}$) only holds when $b>0$ "
- But why does this take an executive order?
- We could "look up the definition"

Who decide definitions in mathematics?

- Cody Patterson on Facebook: "I think that in his first 100 days President Biden should issue an executive order stipulating that 0^{0} is defined to be 1 , and the exponential rule for limits (that $\lim _{x \rightarrow a} b^{x}=b^{a}$) only holds when $b>0$ "
- But why does this take an executive order?
- We could "look up the definition"
- leads to a dead-end, or an arbitrary choice

Who decide definitions in mathematics?

- Cody Patterson on Facebook: "I think that in his first 100 days President Biden should issue an executive order stipulating that 0^{0} is defined to be 1 , and the exponential rule for limits (that $\lim _{x \rightarrow a} b^{x}=b^{a}$) only holds when $b>0$ "
- But why does this take an executive order?
- We could "look up the definition"
- leads to a dead-end, or an arbitrary choice
- I choose $0^{0}=1$ because of combinatorics

Who decide definitions in mathematics?

- Cody Patterson on Facebook: "I think that in his first 100 days President Biden should issue an executive order stipulating that 0^{0} is defined to be 1 , and the exponential rule for limits (that $\lim _{x \rightarrow a} b^{x}=b^{a}$) only holds when $b>0$ "
- But why does this take an executive order?
- We could "look up the definition"
- leads to a dead-end, or an arbitrary choice
- I choose $0^{0}=1$ because of combinatorics
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$

Who decide definitions in mathematics?

- Cody Patterson on Facebook: "I think that in his first 100 days President Biden should issue an executive order stipulating that 0^{0} is defined to be 1 , and the exponential rule for limits (that $\lim _{x \rightarrow a} b^{x}=b^{a}$) only holds when $b>0$ "
- But why does this take an executive order?
- We could "look up the definition"
- leads to a dead-end, or an arbitrary choice
- I choose $0^{0}=1$ because of combinatorics
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$
- $(0+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} 0^{i} y^{n-i}=0^{0} y^{n}$

Who decide definitions in mathematics?

- Cody Patterson on Facebook: "I think that in his first 100 days President Biden should issue an executive order stipulating that 0^{0} is defined to be 1 , and the exponential rule for limits (that $\lim _{x \rightarrow a} b^{x}=b^{a}$) only holds when $b>0$ "
- But why does this take an executive order?
- We could "look up the definition"
- leads to a dead-end, or an arbitrary choice
- I choose $0^{0}=1$ because of combinatorics
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$
- $(0+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} 0^{i} y^{n-i}=0^{0} y^{n}$
- This was a choice, to make a theorem nicer to state

Why do we even need definitions?

- Brevity

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"
- or $\sin (x)$?

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"
- or $\sin (x)$?
- Repetition

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"
- or $\sin (x)$?
- Repetition
- $\sin x$ actually comes up a lot

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"
- or $\sin (x)$?
- Repetition
- $\sin x$ actually comes up a lot
- $5 x^{17}-29 x^{2}+42$ does not come up a lot

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"
- or $\sin (x)$?
- Repetition
- $\sin x$ actually comes up a lot
- $5 x^{17}-29 x^{2}+42$ does not come up a lot
- Examples

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"
- or $\sin (x)$?
- Repetition
- $\sin x$ actually comes up a lot
- $5 x^{17}-29 x^{2}+42$ does not come up a lot
- Examples
- e^{x}

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"
- or $\sin (x)$?
- Repetition
- $\sin x$ actually comes up a lot
- $5 x^{17}-29 x^{2}+42$ does not come up a lot
- Examples
$-e^{x}$
- $\ln x$

Why do we even need definitions?

- Brevity
- "the ratio of the length of the side opposite an angle with measure x to the length of the hypotenuse of a right triangle"
or $\sin (x)$?
- Repetition
- $\sin x$ actually comes up a lot
- $5 x^{17}-29 x^{2}+42$ does not come up a lot
- Examples
$-e^{x}$
- $\ln x$
- prime number

Addition

- What are some essential features of addition of real numbers?

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $x+y=y+x$ (commutative)

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $x+y=y+x$ (commutative)
- $0+x=x+0=x$ (identity)

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $x+y=y+x$ (commutative)
- $0+x=x+0=x$ (identity)
- $(-x)+x=x+(-x)=0$ (inverse)

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $x+y=y+x$ (commutative)
- $0+x=x+0=x$ (identity)
- $(-x)+x=x+(-x)=0$ (inverse)
- (almost) everything else we need comes from these

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $x+y=y+x$ (commutative)
- $0+x=x+0=x$ (identity)
- $(-x)+x=x+(-x)=0$ (inverse)
- (almost) everything else we need comes from these
- Other things satisfy these properties too

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $x+y=y+x$ (commutative)
- $0+x=x+0=x$ (identity)
- $(-x)+x=x+(-x)=0$ (inverse)
- (almost) everything else we need comes from these
- Other things satisfy these properties too
- Unify, clarify proofs and explanations

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $x+y=y+x$ (commutative)
- $0+x=x+0=x$ (identity)
- $(-x)+x=x+(-x)=0$ (inverse)
- (almost) everything else we need comes from these
- Other things satisfy these properties too
- Unify, clarify proofs and explanations
- Find other examples

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $x+y=y+x$ (commutative)
- $0+x=x+0=x$ (identity)
- $(-x)+x=x+(-x)=0$ (inverse)
- (almost) everything else we need comes from these
- Other things satisfy these properties too
- Unify, clarify proofs and explanations
- Find other examples
- sets of conditions that work well together, that come up often, become definitions

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $0+x=x+0=x$ (identity)
- $(-x)+x=x+(-x)=0$ (inverse)
- (almost) everything else we need comes from these
- Other things satisfy these properties too
- Unify, clarify proofs and explanations
- Find other examples
- sets of conditions that work well together, that come up often, become definitions
- But we don't always need commutativity; remaining properties are definition of group

Addition

- What are some essential features of addition of real numbers?
- $x+y$ is real (closed)
- $(x+y)+z=x+(y+z)$ (associative)
- $0+x=x+0=x$ (identity)
- $(-x)+x=x+(-x)=0$ (inverse)
- (almost) everything else we need comes from these
- Other things satisfy these properties too
- Unify, clarify proofs and explanations
- Find other examples
- sets of conditions that work well together, that come up often, become definitions
- But we don't always need commutativity; remaining properties are definition of group
- Example that there is some choice in which conditions to include in a definition.

Including ∞

- Just because we can make choices, not all choices are good

Including ∞

- Just because we can make choices, not all choices are good
- Can we choose to include ∞ with the real numbers?

Including ∞

- Just because we can make choices, not all choices are good
- Can we choose to include ∞ with the real numbers?
- $\infty+x=x+\infty=\infty$

Including ∞

- Just because we can make choices, not all choices are good
- Can we choose to include ∞ with the real numbers?
- $\infty+x=x+\infty=\infty$
- $\infty-\infty=0$

Including ∞

- Just because we can make choices, not all choices are good
- Can we choose to include ∞ with the real numbers?
- $\infty+x=x+\infty=\infty$
- $\infty-\infty=0$
- No associativity: $(3+\infty)+-\infty=0$, but $3+(\infty+-\infty)=3$

Including ∞

- Just because we can make choices, not all choices are good
- Can we choose to include ∞ with the real numbers?
- $\infty+x=x+\infty=\infty$
- $\infty-\infty=0$
- No associativity: $(3+\infty)+-\infty=0$, but $3+(\infty+-\infty)=3$
- You could just leave out associativity, but that's much less interesting

Including ∞

- Just because we can make choices, not all choices are good
- Can we choose to include ∞ with the real numbers?
- $\infty+x=x+\infty=\infty$
- $\infty-\infty=0$
- No associativity: $(3+\infty)+-\infty=0$, but $3+(\infty+-\infty)=3$
- You could just leave out associativity, but that's much less interesting
- No cancellation: $\infty+5=\infty+3$, but $5 \neq 3$.

Defining exponentiation

- Some choices are forced

Defining exponentiation

- Some choices are forced

Why is $b^{1 / 2}=\sqrt{b}$?

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$
- For integers n, m

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$
- For integers n, m
- For any n, m

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$
- For integers n, m
- For any n, m
- $b=b^{1 / 2+1 / 2}=\left(b^{1 / 2}\right) \times\left(b^{1 / 2}\right)$

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$
- For integers n, m
- For any n, m
- $b=b^{1 / 2+1 / 2}=\left(b^{1 / 2}\right) \times\left(b^{1 / 2}\right)$
- We also need that square root exists and is unique, by showing x^{2} is an invertible function.

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$
- For integers n, m
- For any n, m
- $b=b^{1 / 2+1 / 2}=\left(b^{1 / 2}\right) \times\left(b^{1 / 2}\right)$
- We also need that square root exists and is unique, by showing x^{2} is an invertible function.
- Define rational exponents

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$
- For integers n, m
- For any n, m
- $b=b^{1 / 2+1 / 2}=\left(b^{1 / 2}\right) \times\left(b^{1 / 2}\right)$
- We also need that square root exists and is unique, by showing x^{2} is an invertible function.
- Define rational exponents
- Define real exponents with limits

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$
- For integers n, m
- For any n, m
- $b=b^{1 / 2+1 / 2}=\left(b^{1 / 2}\right) \times\left(b^{1 / 2}\right)$
- We also need that square root exists and is unique, by showing x^{2} is an invertible function.
- Define rational exponents
- Define real exponents with limits
- Negative bases cause all sorts of trouble and exceptions

Defining exponentiation

- Some choices are forced
- Why is $b^{1 / 2}=\sqrt{b}$?
- Start with $b^{n+m}=\left(b^{n}\right) \times\left(b^{m}\right)$
\rightarrow For integers n, m
- For any n, m
- $b=b^{1 / 2+1 / 2}=\left(b^{1 / 2}\right) \times\left(b^{1 / 2}\right)$
- We also need that square root exists and is unique, by showing x^{2} is an invertible function.
- Define rational exponents
- Define real exponents with limits
- Negative bases cause all sorts of trouble and exceptions
- $\sqrt[3]{-64}$ exists, but $\sqrt{-64}$ does not

Is 1 prime?

- Extreme cases cause the most trouble, but still involve choices

Is 1 prime?

- Extreme cases cause the most trouble, but still involve choices
- Prime: A number only divisible by 1 and itself

Is 1 prime?

- Extreme cases cause the most trouble, but still involve choices
- Prime: A number only divisible by 1 and itself
- ... but we usually go out of our way to exclude 1 . Why?

Is 1 prime?

- Extreme cases cause the most trouble, but still involve choices
- Prime: A number only divisible by 1 and itself
- ... but we usually go out of our way to exclude 1. Why?
- Prime factorization is unique

Is 1 prime?

- Extreme cases cause the most trouble, but still involve choices
- Prime: A number only divisible by 1 and itself
- ... but we usually go out of our way to exclude 1. Why?
- Prime factorization is unique
- $60=2 \times 5 \times 2 \times 3=5 \times 2 \times 3 \times 2=\cdots$

Is 1 prime?

- Extreme cases cause the most trouble, but still involve choices
- Prime: A number only divisible by 1 and itself
- ... but we usually go out of our way to exclude 1. Why?
- Prime factorization is unique
- $60=2 \times 5 \times 2 \times 3=5 \times 2 \times 3 \times 2=\cdots$
- $60=2 \times 2 \times 3 \times 5=2^{2} \times 3 \times 5$

Is 1 prime?

- Extreme cases cause the most trouble, but still involve choices
- Prime: A number only divisible by 1 and itself
- ... but we usually go out of our way to exclude 1. Why?
- Prime factorization is unique
- $60=2 \times 5 \times 2 \times 3=5 \times 2 \times 3 \times 2=\cdots$
- $60=2 \times 2 \times 3 \times 5=2^{2} \times 3 \times 5$
- $60=1 \times 1 \times \cdots \times 1 \times 2 \times 2 \times 3 \times 5$

Is -7 prime?

- Prime: A number only divisible by 1 and itself

Is -7 prime?

- Prime: A number only divisible by 1 and itself
- But n satisfies this definition only if $-n$ is

Is -7 prime?

- Prime: A number only divisible by 1 and itself
- But n satisfies this definition only if $-n$ is
- Everything is also divisible by -1

Is -7 prime?

- Prime: A number only divisible by 1 and itself
- But n satisfies this definition only if $-n$ is
- Everything is also divisible by -1
- We call 1 and -1 units, and they are not interesting for factorization

Is -7 prime?

- Prime: A number only divisible by 1 and itself
- But n satisfies this definition only if $-n$ is
- Everything is also divisible by -1
- We call 1 and -1 units, and they are not interesting for factorization
- We restrict factorization to positive integers

Is -7 prime?

- Prime: A number only divisible by 1 and itself
- But n satisfies this definition only if $-n$ is
- Everything is also divisible by -1
- We call 1 and -1 units, and they are not interesting for factorization
- We restrict factorization to positive integers
- (In polynomial factorization, all the non-zero numbers are units)

Empty set

- Is the empty set \varnothing a set?

Empty set

\downarrow Is the empty set \varnothing a set?

- Is $\varnothing \subseteq A$?

Empty set

- Is the empty set \varnothing a set?
- Is $\varnothing \subseteq A$?
- Is every element of \varnothing also an element of A ?

Empty set

\downarrow Is the empty set \varnothing a set?

- Is $\varnothing \subseteq A$?
- Is every element of \varnothing also an element of A ?
- Does $x \in \varnothing$ imply $x \in A$?

Empty set

- Is the empty set \varnothing a set?
- Is $\varnothing \subseteq A$?
- Is every element of \varnothing also an element of A ?
- Does $x \in \varnothing$ imply $x \in A$?
- False hypothesis makes implication true!

$0!$

- What is $0!$?

0 !

- What is $0!$?
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}=1 y^{n}+\cdots+1 x^{n}$

0 !

- What is $0!?$
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}=1 y^{n}+\cdots+1 x^{n}$
- So we want $\binom{n}{0}=\binom{n}{n}=1$

0 !

- What is $0!$?
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}=1 y^{n}+\cdots+1 x^{n}$
-So we want $\binom{n}{0}=\binom{n}{n}=1$
- Which also makes sense from counting

0 !

- What is $0!$?
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}=1 y^{n}+\cdots+1 x^{n}$
- So we want $\binom{n}{0}=\binom{n}{n}=1$
- Which also makes sense from counting
- $\binom{n}{i}=\frac{n!}{i!(n-i)!}$

0 !

- What is $0!$?
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}=1 y^{n}+\cdots+1 x^{n}$
- So we want $\binom{n}{0}=\binom{n}{n}=1$
- Which also makes sense from counting
- $\binom{n}{i}=\frac{n!}{i!(n-i)!}$
- $\binom{n}{0}=\binom{n}{n}=\frac{n!}{n!0!}$

0 !

- What is $0!$?
- $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}=1 y^{n}+\cdots+1 x^{n}$
- So we want $\binom{n}{0}=\binom{n}{n}=1$
- Which also makes sense from counting
- $\binom{n}{i}=\frac{n!}{i!(n-i)!}$
- $\binom{n}{0}=\binom{n}{n}=\frac{n!}{n!0!}$
- So 0 ! $=1$

Special cases

- Is a square (special case of) a rectangle?

Special cases

- Is a square (special case of) a rectangle?
- Yes, so theorems that produce rectangles don't have to keep saying "unless it's a square"

Special cases

- Is a square (special case of) a rectangle?
- Yes, so theorems that produce rectangles don't have to keep saying "unless it's a square"
- A circle is an ellipse

Special cases

- Is a square (special case of) a rectangle?
- Yes, so theorems that produce rectangles don't have to keep saying "unless it's a square"
- A circle is an ellipse
- An equilateral triangle is isosceles

Special cases

- Is a square (special case of) a rectangle?
- Yes, so theorems that produce rectangles don't have to keep saying "unless it's a square"
- A circle is an ellipse
- An equilateral triangle is isosceles
- An integer is a rational number

Special cases

- Is a square (special case of) a rectangle?
- Yes, so theorems that produce rectangles don't have to keep saying "unless it's a square"
- A circle is an ellipse
- An equilateral triangle is isosceles
- An integer is a rational number
- Is 5 a polynomial?

Special cases

- Is a square (special case of) a rectangle?
- Yes, so theorems that produce rectangles don't have to keep saying "unless it's a square"
- A circle is an ellipse
- An equilateral triangle is isosceles
- An integer is a rational number
- Is 5 a polynomial?
- Yes, so for instance the sum of two polynomials is always a polynomial

Matrix multiplication

-Why is matrix multiplication defined the way it is?

$$
\begin{gathered}
\text { "Dot Product" } \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{l}
58
\end{array}\right]}
\end{gathered}
$$

Matrix multiplication

-Why is matrix multiplication defined the way it is?

- To guarantee $(A B) v=A(B v)$, where v is a vector

$$
\begin{gathered}
\text { "Dot Product" } \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{l}
58
\end{array}\right]}
\end{gathered}
$$

Matrix multiplication

- Why is matrix multiplication defined the way it is?
- To guarantee $(A B) v=A(B v)$, where v is a vector
- So the equation comes first, then the definition, not the other way around!

$$
\begin{gathered}
\text { "Dot Product" } \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{l}
58
\end{array}\right]}
\end{gathered}
$$

Range of inverse trig functions

- Trig functions are not 1-1

Range of inverse trig functions

- Trig functions are not 1-1
- So to define inverse trig functions, we need to restrict the domain of the trig functions

Range of inverse trig functions

- Trig functions are not 1-1
- So to define inverse trig functions, we need to restrict the domain of the trig functions
- Which domain do we pick?

Summary

- Definitions have to come first

Summary

- Definitions have to come first
- We can (we have to?) make choices in definitions, often to make results nicer

Summary

- Definitions have to come first
- We can (we have to?) make choices in definitions, often to make results nicer
- Sets of conditions that work well together, that come up often, become definitions but there is some choice in which conditions to include

Summary

- Definitions have to come first
- We can (we have to?) make choices in definitions, often to make results nicer
- Sets of conditions that work well together, that come up often, become definitions but there is some choice in which conditions to include
- Just because we can make choices, not all choices are good

Summary

- Definitions have to come first
- We can (we have to?) make choices in definitions, often to make results nicer
- Sets of conditions that work well together, that come up often, become definitions but there is some choice in which conditions to include
- Just because we can make choices, not all choices are good
- Some choices are forced

Summary

- Definitions have to come first
- We can (we have to?) make choices in definitions, often to make results nicer
- Sets of conditions that work well together, that come up often, become definitions but there is some choice in which conditions to include
- Just because we can make choices, not all choices are good
- Some choices are forced
- Extreme cases cause the most trouble, but still involve choices

Summary

- Definitions have to come first
- We can (we have to?) make choices in definitions, often to make results nicer
- Sets of conditions that work well together, that come up often, become definitions but there is some choice in which conditions to include
- Just because we can make choices, not all choices are good
- Some choices are forced
- Extreme cases cause the most trouble, but still involve choices
- We should not hide all this from students!

