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COUNTING SPANNING TREES OF K,
Thm (Cayley): K, has n™~2 spanning trees.

T spanning tree: set of edges containing all
vertices and

1. T|=n-1

2. no cycles (H{(T) = 0)

3. connected (Hy(T) = 0)

Note: Any two conditions imply the third.

WITH WHAT WEIGHTING?
vertices Silly (" 2(xq---xn))

edges No nice structure (can't see n"—2)

edges and vertices Get Prufer coding

wtT = [ wte= ][] (]] zv)

ecT ec’l’ vee
2 TeST(K,) Wt =
(a1 wn) (a1 + - 4 wn)" 2



ARBITRARY GRAPHS

Thm (Matrix Tree): Graph G has |det L, (G))|
spanning trees, where L,(G) is the reduced La-
placian matrix of G.

Defn 1: L(G) = D(G) — A(G)

D(G) = diag(degvq,...,degvy)

A(G) = adjacency matrix

Defn 2: L(G) = 8(G)o(G)T

I(G) = incidence matrix (boundary matrix)

“Reduced” : remove rows/columns correspond-
ing to any one vertex

Proof (Matrix Tree Theorem):

det Lr(G) = det 8,(G)8,(G)T = S (det 8,(T))?
T

= (41)°
T

by Binet-Cauchy



EXAMPLES

Example:
3 1
2 4
3 -1 -1 -1 -1 -1 -1 O 0
-1 3 -1 -1 1 0 O -1 -1
-1 -1 2 O’ O 1 0 1 0
-1 -1 O 2 0 0 1 0 1
Example: K,
L(Kp)=nl—J (n X n);

Lo(Kp)=nl—J (n—1xn-—1)

det L, = | ] eigenvalues

= (n-0) "Dl - (n-1))

— nn—2



WEIGHTED MATRIX TREE THEOREM

Y wtT =|det L.(G)|,
TeST(G)

where [ is weighted Laplacian.

Defn 1: L(G) = D(G) — A(G)

D(G) = diag(deguvy, ..., degvy,)
degv; = 2 viv;€E TiTj

A(G) = adjacency matrix
(entry z;z; for edge v;v;)

Defn 2: L(G) = 8(G)B(G)o(&) 7T

I(G) = incidence matrix
B((G) diagonal, indexed by edges,
entry :|:£IZZ'£U]' for edge ViV,



Example:
3 1 1
2
2 4 :
1(24+344) —12 —13 —14
P —12 2(14+3+4) —23 —24
- —13 —23 3(14+2) 0
—14 —24 0 4(1+2)
2(14+3+4+4) -—23 —24
L, = —23 3(1+2) 0
—24 0 4(1+4 2)

1+3+4 V23 —V24
detL, =234 —/23 142 0
/24 0 142
3+4 —v23 V24
=2341[+(\/§ 2 0 )
—v/24 0 2
=234(14+0)(1+2)(1 +2+3+4)

= (1234)(1+2)(1+2+3+4)




THRESHOLD GRAPHS

Defn 1. V=1,....n
Fet1¢d B je i1 <j=EUi—j€C.

Defn 2: Can build recursively, by adding iso-
lated vertices, and coning.

EXx:

3 1

2 4

APWNH

Thm (Merris ‘'94): Threshold graph has
(d")r

P .

r#1
spanning trees, where d is degree sequence.

Thm (Martin-Reiner ‘03; implied by Remmel-
Williamson ‘02): If G is threshold, then

(d")r

Yoo o wtT = (z1--an) [ ).

TeST(G) r£=1 =1



SIMPLICIAL SPANNING TREES of Kflf

Simplicial complex: A C 2V
FCGeA=FecA.

KF denotes the k-dimensional complete com-
plex on n vertices (so K, = K1).

Simplicial spanning trees of K* (Kalai, ‘83):
Set T, of k-dimensional faces, containing all
(k — 1)-dimensional faces and:

—1
1. |T)= (")
3. H;_1(T) is finite group
Note: Any two conditions imply the third.

How many are there? ,
Bolker (‘76) should be n( ), but isn't

Kalai (‘83) proves

S B (DR = a0

TeSST(KE)



WEIGHTING

As before, weight tree by product of the faces
of the tree, and, for nice factoring, weight face
by product of vertices.

wtT = [[ wtF = [ (] zv)

FeT FeTl veF

Thm (Kalai '83):

S | Hp_ 1 (T)P(WtT)
TeSST(Ky)
2

= (z1- - zn) 7]::1)(331 + ot zn) ")

Adin ('92) did something similar for complete
r-partite complexes.



KALAI'S THEOREM

Proof (unweighted; weighted is similar):

n("c) = det L. (K¥) = det o, (K)o, (k5T
=Y (detd,(T))?
T

=Y |H,_1(D))?
T

by Binet-Cauchy, again.

“Reduced” now means pick one vertex, and
then remove rows/columns corresponding to
all (k — 1)-dimensional faces containing that
vertex.

L = 907

0: A, — Ajp_q boundary
ol A,_1 — A, coboundary
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EXAMPLE n =4,k =2

12 13 14 23 24 34
123[/-1 1 0 -1 0 O
o= 124/-1 0 1 0 -1 O
134/ 0 -1 1 0 0 -1
2340 0 0 -1 1 -1
(2 -1 -1 1 1 0)

-1 2 -1 -1 0 1

;|1 -1 2 0 -1 -1

1 -1 0 2 -1 1

1 0 -1 -1 2 -1
\0 1 -1 1 -1 2

Note that Ly # O iff F' and G differ by just

one vertex.
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SIMPLICIAL SPANNING TREES of
ARBITRARY COMPLEXES

Defn: (Assume dimA = k.) k-dimensional
complex T containing all (k¥ — 1)-dimensional
faces of A (T(,—1) = A(k=1)) ang:

L. fo(T) = fr(A) = Br(D) + Br—1(D)
3. H;,_1(T) is finite group

Note: Any two conditions imply the third.

fr. 1Is number of k-dimensional faces;
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SIMPLICIAL MATRIX TREE THEOREM

Thm (DKM):
3 Hi_~(AN)|?
TeSST(A) |Hk—2(AU)|

U =set of facets of (k — 1)-spanning tree of A
Ly is L reduced by all of U
Ay =UuAk=2)

There is also analogous weighted version.
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SHIFTED SIMPLICIAL COMPLEXES

Defn: V=1,...,n
FeAig&FjeFi<j=FUi—j3€eA
(equivalently, the k-faces form an initial ideal
in the componentwise partial order).

Ex: bipyramid = {123, 124, 125, 134, 135,
234, 235} (and subfaces)

BA={FecA:1¢FFUl¢ZA)
lknl={F—1:1€F,F € A}, shifted
deln1={G:1¢G,G¢c A}, shifted
Bi(A) = fi(Ba)

delpn 1 = |KA1L'JBA

(D-Reiner ‘02) Eigenvalues of top-dimensional
Laplacian given by d! where d is degree se-
quence, d; =|{facets F': i € F'}|.
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EXAMPLE: BIPYRAMID

Ba = 234,235

Ika 1 =23,24,25,34,25;2,3,4,5;(
deIA 1 = IKA 1U BA-

Eigenvalues
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COUNTING TREES OF SHIFTED
COMPLEXES

Pick U to be ridges ((k—1)-dimensional faces)
containing 1, which is acyclic, and contains
(k — 1)-faces of A, and so it is (the facets of)
a simplicial spanning tree.

Also, H._-(Apy) = 0, and if A is pure and
shifted, then H._>(A) = 0, so we just have to
compute det L,.

Ex: bipyramid. Set of all ridges is all possible
edges, except 45. U = {12,13,14,15}, so L,
is indexed by {23,24,25,34,35}.

.Z—\J’r‘ —

23(1+445) —234 _235 234 235
_234 24(1 + 3) 0 _234 0
—235 0 25(1 + 3) 0 —235
234 234 0 (14 2)34 0

235 0 —235 0 (14 2)35
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SIMPLIFICATIONS

det L, = (23)(24)(25)(34)(35) det M

1+4+5 —V/34 —/35 V24 /25
—v34 143 0 —v23 0
detM =| —+/35 0 1+3 0 —V23
V24 —v/23 0 142 0
V25 0 —v23 0 142
— 1I—|—N‘
(445 —v34 —/35 24 /25
—v34 3 0 —v23 0
N=|-/35 0 3 0 —V23
V24 —/23 0 2 0
\v25 0 —V23 0 2 )

Remarkably, N is a weighted Laplacian of dela 1;
N = 981" with

o7 — (V4 —V3 0 v2 0
W5 0 —v3 0 V2

The (F,G) entry of this matrix is v F — G.
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FURTHER SIMPLIFICATIONS

This makes the eigenvalues of this N be
0,0,0,24+3,24+3+4+5, and

detM = (1)3(1+2+3)(14+2+34+44+5).
Finally it makes the weighted tree enumerator
of the bipyramid

(23) (24) (25) (34) (35)
x (1)3(1+24+3)(1+2+3+4+5).

More generally,

|R| 14dl
(H xF) H Z L,
FeR r=1 =1

where R = facets of Ika 1 and d is the degree
sequence of dela 1.

18



