Matroids and statistical dependency

Art Duval, Amy Wagler
University of Texas at El Paso
Discrete Math Seminar
Texas State University
March 2, 2018

Set dependence

- Can three variables be somehow (statistically) dependent, even when no two of them are?

Set dependence

- Can three variables be somehow (statistically) dependent, even when no two of them are?
- Yes. For instance, $Z=1+X Y+\epsilon$.

Set dependence

- Can three variables be somehow (statistically) dependent, even when no two of them are?
- Yes. For instance, $Z=1+X Y+\epsilon$.
- We might expect to get any sort of simplicial complex (subsets of independent sets are independent).

Set dependence

- Can three variables be somehow (statistically) dependent, even when no two of them are?
- Yes. For instance, $Z=1+X Y+\epsilon$.
- We might expect to get any sort of simplicial complex (subsets of independent sets are independent).
- We can even get the Fano plane: A, B, C independent, $D=A B, E=B C, F=C A, G=D E F$.

Matroids

If we are in a situation where set dependence gives us a matroid, this would be useful to statisticians in at least two ways:

Matroids

If we are in a situation where set dependence gives us a matroid, this would be useful to statisticians in at least two ways:

- In regression modeling, matroid structures could be used as a variable selection procedure to find the most parsimonious set of X 's to predict a Y. The results of the minimally dependent sets [circuits] would also inform which interactions ($x_{1} x_{2}$ products) should be investigated for inclusion to the model.
- In big data settings, a matroid would identify maximally independent sets [bases] so that multiplicity can be corrected at the circuit level rather than the full data set.

How to picture data

Each variable is a vector, whose components are measurements of this variable.

- m different variables
- n different trials
- m vectors in \mathbb{R}^{n}

Example

Three variables, four trials

$$
\begin{aligned}
& X=\left(\begin{array}{lccc}
3.1 & 1 & 4 & 2
\end{array}\right) \\
& Y=\left(\begin{array}{llll}
2 & 1 & 6.9 & 8
\end{array}\right) \\
& Z=\left(\begin{array}{llll}
5 & 2.1 & 11 & 9.9
\end{array}\right)
\end{aligned}
$$

Dependence

Example

$$
\begin{aligned}
& X=\left(\begin{array}{lccc}
3.1 & 1 & 4 & 2
\end{array}\right) \\
& Y=\left(\begin{array}{lccc}
2 & 1 & 6.9 & 8
\end{array}\right) \\
& Z=\left(\begin{array}{lll}
5 & 2.1 & 11
\end{array} 9.9\right.
\end{aligned}
$$

- Knowing the value of any two of X, Y, Z tells you approximately the value of the third;

Dependence

Example

$$
\begin{aligned}
& X=\left(\begin{array}{lccc}
3.1 & 1 & 4 & 2
\end{array}\right) \\
& Y=\left(\begin{array}{llll}
2 & 1 & 6.9 & 8
\end{array}\right) \\
& Z=\left(\begin{array}{lll}
5 & 2.1 & 11
\end{array} 9.9\right.
\end{aligned}
$$

- Knowing the value of any two of X, Y, Z tells you approximately the value of the third;
- but knowing only one variable tells you nothing about either of the others.

Dependence

Example

$$
\begin{aligned}
& X=\left(\begin{array}{lccc}
3.1 & 1 & 4 & 2
\end{array}\right) \\
& Y=\left(\begin{array}{llll}
2 & 1 & 6.9 & 8
\end{array}\right) \\
& Z=\left(\begin{array}{lll}
5 & 2.1 & 11
\end{array} 9.9\right.
\end{aligned}
$$

- Knowing the value of any two of X, Y, Z tells you approximately the value of the third;
- but knowing only one variable tells you nothing about either of the others.

Dependence

Example

$$
\begin{aligned}
& X=\left(\begin{array}{lccc}
3.1 & 1 & 4 & 2
\end{array}\right) \\
& Y=\left(\begin{array}{llcl}
2 & 1 & 6.9 & 8
\end{array}\right) \\
& Z=\left(\begin{array}{lll}
5 & 2.1 & 11
\end{array} 9.9\right.
\end{aligned}
$$

- Knowing the value of any two of X, Y, Z tells you approximately the value of the third;
- but knowing only one variable tells you nothing about either of the others.

So this set is (minimally) dependent.

How to measure dependence

Example

$$
\begin{aligned}
& X=\left(\begin{array}{lccc}
3.1 & 1 & 4 & 2
\end{array}\right) \\
& Y=\left(\begin{array}{llll}
2 & 1 & 6.9 & 8
\end{array}\right) \\
& Z=\left(\begin{array}{llll}
5 & 2.1 & 11 & 9.9
\end{array}\right)
\end{aligned}
$$

Question

How can we identify statistically independent sets in general? And capture non-linear dependence? What is "close enough"?

How to measure dependence

Example

$$
\begin{aligned}
& X=\left(\begin{array}{lccc}
3.1 & 1 & 4 & 2
\end{array}\right) \\
& Y=\left(\begin{array}{llll}
2 & 1 & 6.9 & 8
\end{array}\right) \\
& Z=\left(\begin{array}{llll}
5 & 2.1 & 11 & 9.9
\end{array}\right)
\end{aligned}
$$

Question

How can we identify statistically independent sets in general? And capture non-linear dependence? What is "close enough"?
We will use

- Effective dependence
- Joint cumulants

These appear to be consistent measures of dependence.

Effective dependence

Effective dependence $=1-\Psi$, where

$$
\Psi=\frac{|\operatorname{det} \Sigma|^{1 / m}}{\left(\sum \lambda_{i}\right) / m}=\frac{\text { geometric mean }}{\text { arithmetic mean }}
$$

is sphericity;

- Σ is covariance matrix (pairwise covariance of variables);
- λ_{i} are eigenvalues of Σ.

Joint cumulants

Definition

$$
\prod_{a=1}^{b(\tau)} E\left(\prod_{i \in \tau_{a}} X_{i}\right)=\sum_{\sigma \leq \tau} \kappa_{\sigma}
$$

By Möbius inversion, we can solve for κ 's.
Example

$$
\begin{aligned}
E\left(X_{1}\right) E\left(X_{2}\right) E\left(X_{3}\right) E\left(X_{4}\right) & =\kappa_{1|2| 3 \mid 4} \\
E\left(X_{1} X_{2}\right) E\left(X_{3}\right) E\left(X_{4}\right) & =\kappa_{1|2| 3 \mid 4}+\kappa_{12|3| 4}
\end{aligned}
$$

So $\kappa_{12|3| 4}=\left(E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)\right) E\left(X_{3}\right) E\left(X_{4}\right)$

Joint cumulants

Definition

$$
\prod_{a=1}^{b(\tau)} E\left(\prod_{i \in \tau_{a}} X_{i}\right)=\sum_{\sigma \leq \tau} \kappa_{\sigma}
$$

By Möbius inversion, we can solve for κ 's.
Example

$$
\begin{aligned}
E\left(X_{1}\right) E\left(X_{2}\right) E\left(X_{3}\right) E\left(X_{4}\right) & =\kappa_{1|2| 3 \mid 4} \\
E\left(X_{1} X_{2}\right) E\left(X_{3}\right) E\left(X_{4}\right) & =\kappa_{1|2| 3 \mid 4}+\kappa_{12|3| 4}
\end{aligned}
$$

So $\kappa_{12|3| 4}=\left(E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)\right) E\left(X_{3}\right) E\left(X_{4}\right)$
Our test of set dependence: If there is a partition of a set into two parts such that there is a cumulant dependence $\kappa_{\alpha \mid \beta} \neq 0$.

Matroids

Matroids make abstract ideas of independence, and model

- linear independence and dependence of sets of vectors in linear algebra;
- independent (cycle-free) sets of edges in graphs;
- etc.

Matroids

Matroids make abstract ideas of independence, and model

- linear independence and dependence of sets of vectors in linear algebra;
- independent (cycle-free) sets of edges in graphs;
- etc.

Remark

Not all matroids can be represented by vectors or graphs

Independent sets

- \emptyset is independent.
- Any subset of an independent set is also independent.
- If I_{1}, I_{2} independent, and $\left|I_{2}\right|=\left|I_{1}\right|+1$, then $\exists x \in I_{2}-I_{1}$ such that $I_{1} \cup\{x\}$ is independent.

Bases

Maximally independent sets

- \emptyset is not a basis.
- One basis cannot be a proper subset of another basis.
- If B_{1}, B_{2} are bases and $x \in B$, then $\exists y \in B_{2}$ such that $\left(B_{1}-\{x\}\right) \cup\{y\}$ is a basis.

Circuits

Minimally dependent sets

- \emptyset is not a circuit.
- One circuit cannot be a proper subset of another circuit.
- $\left(C_{1} \cup C_{2}\right)-\{x\}$ contains a circuit for distinct circuits C_{1}, C_{2}.

Rank function

Size of maximal independent subset of a set

- $r(\emptyset)=0$.
- $r(A \cup\{x\})=r(A)$ or $r(A)+1$.
- If $r(A)=r(A \cup\{x\})=r(A \cup\{y\})$, then $r(A \cup\{x, y\})=r(A)$.

Closure axioms

A matroid on ground set E may be defined by closure axioms:

$$
\mathrm{cl}: 2^{E} \rightarrow 2^{E}
$$

- Closure axioms:
- $A \subseteq \mathrm{cl}(A)$
- If $A \subseteq B$, then $\operatorname{cl}(A) \subseteq \operatorname{cl}(B)$
- $\operatorname{cl}(\mathrm{cl}(A))=\operatorname{cl}(A)$
- Exchange axiom: If $x \in \mathrm{cl}(A \cup y)-\mathrm{cl}(A)$, then $y \in \operatorname{cl}(A \cup x)$

For us, $x \in \operatorname{cl}(A)$ means that knowing the values of all the variables in A implies knowing something about the value of x. (Sort of: x is a function of A, with statistical noise and fuzziness.)

Invertibility

Exchange axiom: If $x \in \mathrm{cl}(A \cup y)-\mathrm{cl}(A)$, then $y \in \mathrm{cl}(A \cup x)$

- $x \in \mathrm{cl}(A \cup y)-\mathrm{cl}(A)$ means that in using $A \cup y$ to determine x, we must use (can't ignore) y. ("model parsimony")
- $y \in \mathrm{cl}(A \cup x)$ means we can "solve" for y in terms of x and A.
(This is sort of invertibility.)

Invertibility

Exchange axiom: If $x \in \mathrm{cl}(A \cup y)-\mathrm{cl}(A)$, then $y \in \mathrm{cl}(A \cup x)$

- $x \in \mathrm{cl}(A \cup y)-\mathrm{cl}(A)$ means that in using $A \cup y$ to determine x, we must use (can't ignore) y. ("model parsimony")
- $y \in \mathrm{cl}(A \cup x)$ means we can "solve" for y in terms of x and A. (This is sort of invertibility.)
Easiest way for a function (only way for continuous function) to be invertible is to be monotone in each variable. Fortunately, implied by a common statistical assumption:

Definition (MTP_{2})

(Multivariate Totally Positive of order 2.)
$f(u) f(v) \leq f(u \wedge v) f(u \vee v)$, where f is probability distribution, u and v are vectors of variable values, and \wedge and \vee denote element-wise minimum and maximum.

Multivariate Totally Positive of order 2

Definition $\left(\mathrm{MTP}_{2}\right)$
$f(u) f(v) \leq f(u \wedge v) f(u \vee v)$, where f is probability distribution, u and v are vectors of variable values, and \wedge and \vee denote element-wise minimum and maximum.

Composition

Closure axioms

- $A \subseteq \operatorname{cl}(A)$ (easy)
- If $A \subseteq B$, then $\mathrm{cl}(A) \subseteq \mathrm{cl}(B)$ (easy)
- $\mathrm{cl}(\mathrm{cl}(A))=\mathrm{cl}(A)$ (not so easy)

Composition

Closure axioms

- $A \subseteq \operatorname{cl}(A)$ (easy)
- If $A \subseteq B$, then $\mathrm{cl}(A) \subseteq \mathrm{cl}(B)$ (easy)
- $\mathrm{cl}(\mathrm{cl}(A))=\mathrm{cl}(A)$ (not so easy)

Example

When $A=x$ is a single element and $\mathrm{cl}(x)=\{x, y\}$. We need to avoid $z \in \mathrm{cl}\{x, y\}$ for $z \neq x, y$. In other words, z depends on y, and y depends on x should mean that z depends on x directly. This is a kind of transitivity.

Composition

Closure axioms

- $A \subseteq \mathrm{cl}(A)$ (easy)
- If $A \subseteq B$, then $\mathrm{cl}(A) \subseteq \mathrm{cl}(B)$ (easy)
- $\mathrm{cl}(\mathrm{cl}(A))=\mathrm{cl}(A)$ (not so easy)

Example

When $A=x$ is a single element and $\operatorname{cl}(x)=\{x, y\}$. We need to avoid $z \in \mathrm{cl}\{x, y\}$ for $z \neq x, y$. In other words, z depends on y, and y depends on x should mean that z depends on x directly. This is a kind of transitivity.
More generally, if Z is determined by Y_{1}, \ldots, Y_{p}, and each Y_{i} is determined by X_{1}, \ldots, X_{q}, then Z should be determined directly by X_{1}, \ldots, X_{q}. This is a kind of composition.

Remark

MTP 2 means the dependence will be strong enough to guarantee transitivity, and more generally composition.

Dependence axioms

How we actually show that we have a matroid. The dependent sets \mathcal{D} in a matroid satisfy:

- $\emptyset \notin \mathcal{D}$
- If $D \in \mathcal{D}$ and $D^{\prime} \supseteq D$, then $D^{\prime} \in \mathcal{D}$
- If $I \notin \mathcal{D}$ but $I \cup x, I \cup y \in \mathcal{D}$, then $(I-z) \cup\{x, y\} \in \mathcal{D}$ for all $z \in I$.
We can prove that MTP ${ }_{2}$ distributions satisfy this, using results of Fallat et al. (using that MTP 2 is an upward-stable singleton-transitive compositional semigraphoid).

Example: Cancer genes

Non-matroid analysis: Clusters

$$
\{1,3,4\},\{2,5,6,7,13\},\{8,9,11,12\},\{10\}
$$

Example: Cancer genes

Non-matroid analysis: Clusters

$$
\{1,3,4\},\{2,5,6,7,13\},\{8,9,11,12\},\{10\}
$$

Matroid analysis:

Example: Cancer genes

Non-matroid analysis: Clusters

$$
\{1,3,4\},\{2,5,6,7,13\},\{8,9,11,12\},\{10\}
$$

Matroid analysis:

Example: Cancer genes

Non-matroid analysis: Clusters

$$
\{1,3,4\},\{2,5,6,7,13\},\{8,9,11,12\},\{10\}
$$

Matroid analysis:

Remark

This suggests two independent, possibly latent, variables explaining the left side of the diagram.

