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» Can three variables be somehow (statistically) dependent,
even when no two of them are?
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» Yes. Forinstance, Z =1+ XY +e.

» We might expect to get any sort of simplicial complex
(subsets of independent sets are independent).
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» Can three variables be somehow (statistically) dependent,
even when no two of them are?

> Yes. Forinstance, Z =14+ XY +e.
» We might expect to get any sort of simplicial complex
(subsets of independent sets are independent).

» We can even get the Fano plane: A, B, C independent,
D=AB,E=BC,F=CA G = DEF.
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If we are in a situation where set dependence gives us a matroid,
this would be useful to statisticians in at least two ways:



If we are in a situation where set dependence gives us a matroid,
this would be useful to statisticians in at least two ways:

> In regression modeling, matroid structures could be used as a
variable selection procedure to find the most parsimonious set
of X's to predict a Y. The results of the minimally dependent
sets [circuits| would also inform which interactions (x1x2
products) should be investigated for inclusion to the model.

> In big data settings, a matroid would identify maximally
independent sets [bases| so that multiplicity can be corrected
at the circuit level rather than the full data set.
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this variable.

Each variable is a vector, whose components are measurements of
» m different variables

» n different trials
» m vectors in R”

Example

Three variables, four trials

=(31 1 4 2)
Y=(2 1 69 8)
Z=(5 21 11 9.9)



Example

B1 1 4 2)
(2 1 69 8)
(5 21 11 9.9)

NII<><

» Knowing the value of any two of X, Y, Z tells you
approximately the value of the third;



Example

X=(31 1 4 2)
Y=(2 1 69 8)
Z=(5 21 11 9.9)

» Knowing the value of any two of X, Y, Z tells you
approximately the value of the third;

» but knowing only one variable tells you nothing about either
of the others.
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Example

X=(31 1 4 2)
Y=(2 1 69 8)
Z=(5 21 11 9.9)

» Knowing the value of any two of X, Y, Z tells you
approximately the value of the third;

» but knowing only one variable tells you nothing about either
of the others.
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Example

X=(31 1 4 2)
Y=(2 1 69 8)
Z=(5 21 11 9.9)

» Knowing the value of any two of X, Y, Z tells you
approximately the value of the third;

» but knowing only one variable tells you nothing about either
of the others.

So this set is (minimally) dependent.
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Example

B1 1 4 2)
(2 1 69 8)
(5 21 11 9.9)

N < X
I

Question

How can we identify statistically independent sets in general? And
capture non-linear dependence? What is “close enough”?



Example
X=(B1 1 4 2)
Y=(2 1 69 8)
Z=(5 21 11 9.9)
Question

How can we identify statistically independent sets in general? And
capture non-linear dependence? What is “close enough”?

We will use
» Effective dependence
» Joint cumulants

These appear to be consistent measures of dependence.
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Effective dependence = 1 - W, where

\

_ |detT|Y/m  geometric mean
~ (X_\j)/m  arithmetic mean
is sphericity;

» Y is covariance matrix (pairwise covariance of variables);
> )\; are eigenvalues of X.



Definition

b(r)

[TEQIX) =2~
a=1 €T, o<t
By Mobius inversion, we can solve for «'s.
Example

E(X1)E(X2)E(XR)E(Xa) = Kapj3ja
E(X1X2)E(X3)E(Xa) = K1pj3a + K12p3)4

So kgp3ja = (E(X1X2) — E(X1)E(X2))E(X3)E(Xa)



Definition

b(r)

[T
a=1

11X =2
€T, o<t
By Mobius inversion, we can solve for «'s.
Example

E(X1)E(X2)E(XR)E(Xa) = Kapj3ja
E(X1X2)E(X3)E(Xa) = K1pj3a + K12p3)4

So kigzja = (E(X1X2) — E(X1)E(X2))E(X3)E(Xa)
Our test of set dependence: If there is a partition of a set into two
parts such that there is a cumulant dependence kg # 0.



Matroids make abstract ideas of independence, and model

» linear independence and dependence of sets of vectors in
linear algebra;

» independent (cycle-free) sets of edges in graphs;
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Matroids make abstract ideas of independence, and model

» linear independence and dependence of sets of vectors in
linear algebra;

» independent (cycle-free) sets of edges in graphs;

> etc.
D
Remark
Not all matroids can be represented by vectors or graphs
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» () is independent.

» Any subset of an independent set is also independent.

» If I, I independent, and |k| = ||+ 1, then 3x € ), — | such
that /; U {x} is independent.



Maximally independent sets

» () is not a basis.
» One basis cannot be a proper subset of another basis.

» If By, By are bases and x € B, then dy € By such that
(B1 — {x})U{y} is a basis.
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Minimally dependent sets

» () is not a circuit.

» One circuit cannot be a proper subset of another circuit.

» (G U G) — {x} contains a circuit for distinct circuits Gy, G



Size of maximal independent subset of a set
» r(0) =0.
» r(AU{x}) =r(A) or r(A) + 1.
» If r(A) = r(AU{x}) = r(AU{y}), then r(AU{x, y}) = r(A).
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A matroid on ground set E may be defined by closure axioms:
cl: 2F — 2F
» Closure axioms:
> ACcl(A)
» If AC B, then cl(A) C cl(B)
> cl(cl(A)) = cl(A)

» Exchange axiom: If x € cl(AU y) — cl(A), then y € cl(AU x)
For us, x € cl(A) means that knowing the values of all the

variables in A implies knowing something about the value of x.

(Sort of: x is a function of A, with statistical noise and fuzziness.)



Exchange axiom: If x € cl(AU y) — cl(A), then y € cl(AU x)
» x € cl(AUy) — cl(A) means that in using AU y to determine

X, we must use (can't ignore) y. (“model parsimony”)

» y € cl(AUx) means we can “solve” for y in terms of x and A.
(This is sort of invertibility.)



Exchange axiom: If x € cl(AU y) — cl(A), then y € cl(AU x)
» x € cl(AUy) — cl(A) means that in using AU y to determine
X, we must use (can't ignore) y. (“model parsimony”)
» y € cl(AUx) means we can “solve” for y in terms of x and A.
(This is sort of invertibility.)
Easiest way for a function (only way for continuous function) to be
invertible is to be monotone in each variable. Fortunately, implied
by a common statistical assumption:

Definition (MTP,)

(Multivariate Totally Positive of order 2.)

f(u)f(v) < f(uAv)f(uV v), where f is probability distribution, u
and v are vectors of variable values, and A and V denote
element-wise minimum and maximum.
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Definition (MTP,)

f(u)f(v) < f(uAv)f(uVv), where f is probability distribution, u
and v are vectors of variable values, and A and V denote
element-wise minimum and maximum.
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Closure axioms
» A C cl(A) (easy)

» If AC B, then cl(A) C cl(B) (easy)
» cl(cl(A)) = cl(A) (not so easy)



Closure axioms
» ACcl(A) (easy)
» If AC B, then cl(A) C cl(B) (easy)
» cl(cl(A)) = cl(A) (not so easy)

Example

When A = x is a single element and cl(x) = {x, y}. We need to
avoid z € cl{x,y} for z # x, y. In other words, z depends on y,
and y depends on x should mean that z depends on x directly.
This is a kind of transitivity.
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Closure axioms
» ACcl(A) (easy)
» If AC B, then cl(A) C cl(B) (easy)
» cl(cl(A)) = cl(A) (not so easy)

Example

When A = x is a single element and cl(x) = {x, y}. We need to
avoid z € cl{x,y} for z # x, y. In other words, z depends on y,
and y depends on x should mean that z depends on x directly.
This is a kind of transitivity.

More generally, if Z is determined by Yi,..., Y}, and each Y; is
determined by Xi,..., Xy, then Z should be determined directly by
Xi,...,Xq. This is a kind of composition.

Remark
MTP, means the dependence will be strong enough to guarantee
transitivity, and more generally composition.
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How we actually show that we have a matroid. The dependent sets
D in a matroid satisfy:
> 0 ¢ D

» If DeDand D' DD, then D' € D

» If I €Dbut/lUx,/Uy €D, then (I —z)U{x,y} € D for all
zel.

Fallat et al. (using that MTP; is an upward-stable

We can prove that MTP; distributions satisfy this, using results of
singleton-transitive compositional semigraphoid).



Non-matroid analysis: Clusters

{1,3,4}, {2,5,6,7,13}, {8,9,11,12}, {10}.
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rank 2

134 11
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Non-matroid analysis: Clusters

{1,3,4}, {2,5,6,7,13}, {8,9,11,12}, {10}
Matroid analysis:

rank 2

134 11

S @ O
Remark

This suggests two independent, possibly latent, variables explaining
the left side of the diagram



	Dependence
	Matroids

