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Given a graph G with source S , sink T , and edge capacities κ.

Definition
Flow on G is an assignment of flow xe (non-negative number, and
direction) to each edge such that:

I net flow at each vertex, except S and T , is zero; and

I |xe | ≤ κe .

Value of flow is outflow(S) = inflow(T ).

What is maximum value of flow on G ? How can we be sure?
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Definition
Cut is minimal set of edges whose removal disconnects S from T .
Value of cut is

∑
e∈cut κe .

Clearly, value(flow) ≤ value(cut), so max flow ≤ min cut.

Theorem (Classic max flow min cut)

Max flow = min cut.
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Definition
Flow on G is an assignment of flow xe (non-negative number, and
direction) to each edge such that:

I net flow at each vertex is zero; and

I |xe | ≤ κe .

Value of flow is x0.

Definition
Cut is minimal set of edges, including e0, whose removal
disconnects G . Value of cut is

∑
e∈cut\e0

κe .
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 = 5.

Assign orientation to each edge (flow going “backwards” gets
negative value)

netflow(v) =
∑
v=e+

xe −
∑

v=e−

xe =
∑
v∈e

(−1)ε(e,v)xe = (∂x)v

So net flow condition is ∂x = 0.
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Cuts and coboundary

Assign 1 to every vertex in connected component with T , 0 to
others. Let yv be value at v . Edges in cut are those that have
both 0 and 1 endpoints.
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Coboundary will do this: ∂T y (linear combination of rows of ∂)
gives characteristic vector of cut.
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Flow is now a linear program

I Find vector x (in edge space)

I ∂x = 0 (x is in flow space)

I −κe ≤ xe ≤ κe (can omit e0)

I max x0

The dual program is (can easily be reworked to say):

I Find vector y (in vertex space)

I Let u = ∂T y (in cut space)

I u0 = 1

I min
∑

e κe |ue |
Linear programming says the solutions are equal; with some effort
we can show the solution to the dual LP is the min cut problem.
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Max flow in higher dimensions
Example: 2-dimensional complex; ∂ maps 2-dimensional cells
(polygons) to edges.

I Find vector x (in polygon space)

I ∂x = 0 (x is in flow space)

I −κp ≤ xp ≤ κp (can omit p0)

I identify designated polygon p0; max x0

Find a 1-dimensional cycle on the complex, and attach a polygon
face filling that cycle. We are trying to maximize circulation on
that designated polygon (around that cycle), while making all
circulation balance on each edge.
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Min cut in higher dimensions

The dual program is (can easily be reworked to say):

I Find vector y (in edge space)

I Let u = ∂T y (in cut space)

I u0 = 1

I min
∑

p κp|up|
Linear programming says the solutions are equal; with some effort
we can show the solution to the dual LP is the min cut problem.

In particular, the support on this cut is a minimal set of polygons
whose removal introduces codimension-1 homology, e.g.,
1-dimensional “circular” hole in 2-dimensional complex
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Summary

Theorem (DKM)

The max circulation around a codimension-1 cycle (e.g.,
1-dimensional cycle in 2-dimensional complex) equals the value of
a minimum cut containing the added face that fills in the cycle
(e.g., polygon filling in 1-dimensional cycle).

Fine print:

I cut is minimal set of faces whose removal increases
codimension-1 homology

I cut vector is in span of row space of boundary matrix

I normalize cut vector by specifying its value is 1 on p0, the
added filling-in face

I cut vector might not be all 1’s and 0’s

I value of cut is inner product of capacities with cut vector
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