Matroids and statistical dependency

Art Duval, Amy Wagler

University of Texas at El Paso

Combinatorics and Geometry Seminar University of Washington June 5, 2019

AD supported by Simons Foundation Grant 516801

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Can three variables be somehow (statistically) dependent, even when no two of them are?

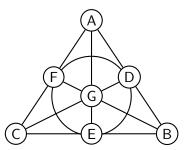
Can three variables be somehow (statistically) dependent, even when no two of them are?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Yes. For instance, $Z = 1 + XY + \epsilon$.

- Can three variables be somehow (statistically) dependent, even when no two of them are?
- Yes. For instance, $Z = 1 + XY + \epsilon$.
- We might expect to get any sort of simplicial complex (subsets of independent sets are independent).

- Can three variables be somehow (statistically) dependent, even when no two of them are?
- Yes. For instance, $Z = 1 + XY + \epsilon$.
- We might expect to get any sort of simplicial complex (subsets of independent sets are independent).
- ► We can even get the Fano plane: A, B, C independent, D = AB, E = BC, F = CA, G = DEF.



If we are in a situation where set dependence gives us a matroid, this would be useful to statisticians in at least two ways:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If we are in a situation where set dependence gives us a matroid, this would be useful to statisticians in at least two ways:

- ► In regression modeling, matroid structures could be used as a variable selection procedure to find the most parsimonious set of X's to predict a Y. The results of the minimally dependent sets [circuits] would also inform which interactions (x₁x₂ products) should be investigated for inclusion to the model.
- In big data settings, a matroid would identify maximally independent sets [bases] so that multiplicity can be corrected at the circuit level rather than the full data set.

(日) (同) (三) (三) (三) (○) (○)

Each variable is a vector, whose components are measurements of this variable.

- m different variables
- n different trials
- *m* vectors in \mathbb{R}^n

Example

Three variables, four trials

$$X = (3.1 \quad 1 \quad 4 \quad 2)$$

$$Y = (2 \quad 1 \quad 6.9 \quad 8)$$

$$Z = (5 \quad 2.1 \quad 11 \quad 9.9)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$X = \begin{pmatrix} 3.1 & 1 & 4 & 2 \end{pmatrix}$$

$$Y = \begin{pmatrix} 2 & 1 & 6.9 & 8 \end{pmatrix}$$

$$Z = \begin{pmatrix} 5 & 2.1 & 11 & 9.9 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Knowing the value of any two of X, Y, Z tells you approximately the value of the third;

$$\begin{array}{ccccc} X = (3.1 & 1 & 4 & 2 \) \\ Y = (2 & 1 & 6.9 & 8 \) \\ Z = (5 & 2.1 & 11 & 9.9) \end{array}$$

- Knowing the value of any two of X, Y, Z tells you approximately the value of the third;
- but knowing only one variable tells you nothing about either of the others.

$$\begin{array}{ccccc} X = (3.1 & 1 & 4 & 2 \) \\ Y = (2 & 1 & 6.9 & 8 \) \\ Z = (5 & 2.1 & 11 & 9.9) \end{array}$$

- Knowing the value of any two of X, Y, Z tells you approximately the value of the third;
- but knowing only one variable tells you nothing about either of the others.

- Knowing the value of any two of X, Y, Z tells you approximately the value of the third;
- but knowing only one variable tells you nothing about either of the others.

So this set is (minimally) dependent.

$$X = (3.1 \quad 1 \quad 4 \quad 2)$$

$$Y = (2 \quad 1 \quad 6.9 \quad 8)$$

$$Z = (5 \quad 2.1 \quad 11 \quad 9.9)$$

- Knowing the value of any two of X, Y, Z tells you approximately the value of the third;
- but knowing only one variable tells you nothing about either of the others.

So this set is (minimally) dependent.

Question

How can we identify statistically dependent sets in general? And capture non-linear dependence? What is "close enough"?

Definition

$$\prod_{a=1}^{b(\tau)} E(\prod_{i \in \tau_a} X_i) = \sum_{\sigma \le \tau} \kappa_{\sigma}$$

By Möbius inversion, we can solve for κ 's.

Example

$$\begin{aligned} & E(X_1)E(X_2)E(X_3)E(X_4) = \kappa_{1|2|3|4} \\ & E(X_1X_2)E(X_3)E(X_4) = \kappa_{1|2|3|4} + \kappa_{12|3|4} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So $\kappa_{12|3|4} = (E(X_1X_2) - E(X_1)E(X_2))E(X_3)E(X_4)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Our test of set dependence: If there is a partition of a set into two parts such that there is a cumulant dependence κ_{αlβ} ≠ 0.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Our test of set dependence: If there is a partition of a set into two parts such that there is a cumulant dependence κ_{α|β} ≠ 0.

(日) (同) (三) (三) (三) (○) (○)

 And cumulants behave nicely enough to rigorously test statistical significance of distance from zero on actual data.

- Our test of set dependence: If there is a partition of a set into two parts such that there is a cumulant dependence κ_{α|β} ≠ 0.
- And cumulants behave nicely enough to rigorously test statistical significance of distance from zero on actual data.
 - Cumulants are U-statistics and asymptotically normally distributed.

(日) (同) (三) (三) (三) (○) (○)

- Our test of set dependence: If there is a partition of a set into two parts such that there is a cumulant dependence κ_{α|β} ≠ 0.
- And cumulants behave nicely enough to rigorously test statistical significance of distance from zero on actual data.
 - Cumulants are U-statistics and asymptotically normally distributed.

(日) (同) (三) (三) (三) (○) (○)

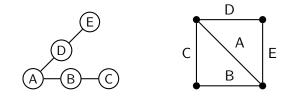
Cumulants have easier interpretive value.

Matroids

Matroids make abstract ideas of independence, and model

- linear independence and dependence of sets of vectors in linear algebra;
- independent (cycle-free) sets of edges in graphs;

etc.

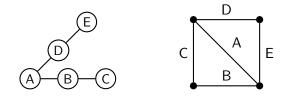


Matroids

Matroids make abstract ideas of independence, and model

- linear independence and dependence of sets of vectors in linear algebra;
- independent (cycle-free) sets of edges in graphs;

etc.



Remark

Not all matroids can be represented by vectors or graphs

Matroids: If $\{x, y\}$ are dependent and $\{y, z\}$ are dependent, then $\{x, z\}$ are dependent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Matroids: If $\{x, y\}$ are dependent and $\{y, z\}$ are dependent, then $\{x, z\}$ are dependent.

 (Linear dependence: If x is a multiple of y and y is a multiple of z, then x is a multiple of z.)

Matroids: If $\{x, y\}$ are dependent and $\{y, z\}$ are dependent, then $\{x, z\}$ are dependent.

 (Linear dependence: If x is a multiple of y and y is a multiple of z, then x is a multiple of z.)

► (Graphs: If x, y are parallel edges and y, z are parallel edges, then x, z are parallel edges.)

 $\times \left(\begin{array}{c} y \\ y \end{array} \right) z$

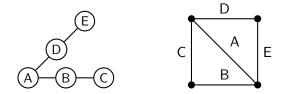
Matroids: If $\{x, y\}$ are dependent and $\{y, z\}$ are dependent, then $\{x, z\}$ are dependent.

 (Linear dependence: If x is a multiple of y and y is a multiple of z, then x is a multiple of z.)

► (Graphs: If x, y are parallel edges and y, z are parallel edges, then x, z are parallel edges.)

Statistics: Not always! But we will look for conditions on data that allow dependence to be modeled by matroids.

- Ø is independent.
- Any subset of an independent set is also independent.
- ▶ If I_1, I_2 independent, and $|I_2| = |I_1| + 1$, then $\exists x \in I_2 I_1$ such that $I_1 \cup \{x\}$ is independent.



Maximally independent sets

- Ø is not a basis.
- One basis cannot be a proper subset of another basis.
- If B_1, B_2 are bases and $x \in B$, then $\exists y \in B_2$ such that $(B_1 \{x\}) \cup \{y\}$ is a basis.

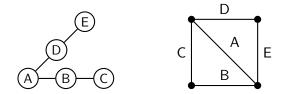


Minimally dependent sets

- ▶ Ø is not a circuit.
- One circuit cannot be a proper subset of another circuit.
- $(C_1 \cup C_2) \{x\}$ contains a circuit for distinct circuits C_1, C_2 .

Size of maximal independent subset of a set

• If $r(S) = r(S \cup \{x\}) = r(S \cup \{y\})$, then $r(S \cup \{x, y\}) = r(S)$.



A matroid on ground set E may be defined by closure axioms:

$$cl: 2^E \rightarrow 2^E$$

Closure axioms:

•
$$A \subseteq cl(A)$$

- If $A \subseteq B$, then $cl(A) \subseteq cl(B)$
- cl(cl(A)) = cl(A)

▶ Exchange axiom: If $x \in cl(A \cup y) - cl(A)$, then $y \in cl(A \cup x)$

For us, $x \in cl(A)$ means that knowing the values of all the variables in A implies knowing something about the value of x. (Sort of: x is a function of A, with statistical noise and fuzziness.)

Invertibility

Exchange axiom: If $x \in cl(A \cup y) - cl(A)$, then $y \in cl(A \cup x)$

- x ∈ cl(A ∪ y) cl(A) means that in using A ∪ y to determine x, we must use (can't ignore) y. ("model parsimony")
- y ∈ cl(A∪x) means we can "solve" for y in terms of x and A. (This is sort of invertibility.)

Invertibility

Exchange axiom: If $x \in cl(A \cup y) - cl(A)$, then $y \in cl(A \cup x)$

- x ∈ cl(A ∪ y) cl(A) means that in using A ∪ y to determine x, we must use (can't ignore) y. ("model parsimony")
- y ∈ cl(A∪x) means we can "solve" for y in terms of x and A. (This is sort of invertibility.)

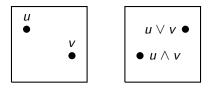
Easiest way for a function (only way for continuous function) to be invertible is to be monotone in each variable. Fortunately, implied by a common statistical assumption:

Definition (MTP₂)

(Multivariate Totally Positive of order 2.) $f(u)f(v) \leq f(u \wedge v)f(u \vee v)$, where f is probability distribution, u and v are vectors of variable values, and \wedge and \vee denote element-wise minimum and maximum.

Definition (MTP₂)

 $f(u)f(v) \leq f(u \wedge v)f(u \vee v)$, where f is probability distribution, u and v are vectors of variable values, and \wedge and \vee denote element-wise minimum and maximum.



Composition

Closure axioms

- $A \subseteq cl(A)$ (easy)
- If $A \subseteq B$, then $cl(A) \subseteq cl(B)$ (easy)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

cl(cl(A)) = cl(A) (not so easy)

Composition

Closure axioms

- $A \subseteq cl(A)$ (easy)
- If $A \subseteq B$, then $cl(A) \subseteq cl(B)$ (easy)

Example

When A = x is a single element and $cl(x) = \{x, y\}$. We need to avoid $z \in cl\{x, y\}$ for $z \neq x, y$. In other words, z depends on y, and y depends on x should mean that z depends on x directly. This is a kind of transitivity.

Composition

Closure axioms

- $A \subseteq cl(A)$ (easy)
- If $A \subseteq B$, then $cl(A) \subseteq cl(B)$ (easy)

Example

When A = x is a single element and $cl(x) = \{x, y\}$. We need to avoid $z \in cl\{x, y\}$ for $z \neq x, y$. In other words, z depends on y, and y depends on x should mean that z depends on x directly. This is a kind of transitivity.

More generally, if Z is determined by Y_1, \ldots, Y_p , and each Y_i is determined by X_1, \ldots, X_q , then Z should be determined directly by X_1, \ldots, X_q . This is a kind of composition.

Remark

MTP₂ means the dependence will be strong enough to guarantee transitivity, and more generally composition.

How we actually show that we have a matroid. The dependent sets $\ensuremath{\mathcal{D}}$ in a matroid satisfy:

- 1. $\emptyset \notin \mathcal{D}$
- 2. If $D \in \mathcal{D}$ and $D' \supseteq D$, then $D' \in \mathcal{D}$

3. If $I \notin \mathcal{D}$, but $I \cup \{x, y\}, I \cup \{y, z\} \in \mathcal{D}$, then $I \cup \{x, z\} \in \mathcal{D}$.

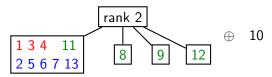
We can prove that MTP_2 distributions satisfy this, using singleton-transitivity of *conditional dependence* when data is MTP_2 .

Non-matroid analysis: Clusters $\{1,3,4\},\ \{2,5,6,7,13\},\ \{8,9,11,12\},\ \{10\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\label{eq:non-matroid analysis: Clusters} $$\{1,3,4\}, \{2,5,6,7,13\}, \{8,9,11,12\}, \{10\}.$$$

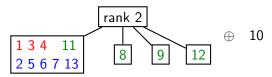
Matroid analysis:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$\label{eq:non-matroid analysis: Clusters} $$\{1,3,4\}, \{2,5,6,7,13\}, \{8,9,11,12\}, \{10\}.$$$

Matroid analysis:

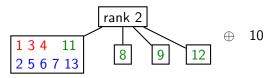


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Non-matroid analysis: Clusters

 $\{1,3,4\},\ \{2,5,6,7,13\},\ \{8,9,11,12\},\ \{10\}.$

Matroid analysis:



Remark

This suggests two independent, possibly latent, variables explaining the left side of the diagram.