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Set dependence

I Can three variables be somehow (statistically) dependent,
even when no two of them are?

I Yes. For instance, Z = 1 + XY + ε.

I We might expect to get any sort of simplicial complex
(subsets of independent sets are independent).

I We can even get the Fano plane: A,B,C independent,
D = AB,E = BC ,F = CA,G = DEF .
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Matroids

If we are in a situation where set dependence gives us a matroid,
this would be useful to statisticians in at least two ways:

I In regression modeling, matroid structures could be used as a
variable selection procedure to find the most parsimonious set
of X ’s to predict a Y . The results of the minimally dependent
sets [circuits] would also inform which interactions (x1x2
products) should be investigated for inclusion to the model.

I In big data settings, a matroid would identify maximally
independent sets [bases] so that multiplicity can be corrected
at the circuit level rather than the full data set.
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How to picture data

Each variable is a vector, whose components are measurements of
this variable.

I m different variables

I n different trials

I m vectors in Rn

Example

Three variables, four trials

X= (3.1 1 4 2 )
Y= ( 2 1 6.9 8 )
Z= ( 5 2.1 11 9.9)



Dependence

Example

X= (3.1 1 4 2 )
Y= ( 2 1 6.9 8 )
Z= ( 5 2.1 11 9.9)

I Knowing the value of any two of X ,Y ,Z tells you
approximately the value of the third;

I but knowing only one variable tells you nothing about either
of the others.

So this set is (minimally) dependent.

Question
How can we identify statistically dependent sets in general? And
capture non-linear dependence? What is “close enough”?
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Joint cumulants

Definition

b(τ)∏
a=1

E (
∏
i∈τa

Xi ) =
∑
σ≤τ

κσ

By Möbius inversion, we can solve for κ’s.

Example
E (X1)E (X2)E (X3)E (X4) = κ1|2|3|4

E (X1X2)E (X3)E (X4) = κ1|2|3|4 + κ12|3|4

So κ12|3|4 = (E (X1X2)− E (X1)E (X2))E (X3)E (X4)



Cumulants and depdendence

κ12|3|4 = (E (X1X2)− E (X1)E (X2))E (X3)E (X4)

I Our test of set dependence: If there is a partition of a set into
two parts such that there is a cumulant dependence κα|β 6= 0.

I And cumulants behave nicely enough to rigorously test
statistical significance of distance from zero on actual data.

I Cumulants are U-statistics and asymptotically normally
distributed.

I Cumulants have easier interpretive value.
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Matroids

Matroids make abstract ideas of independence, and model

I linear independence and dependence of sets of vectors in
linear algebra;

I independent (cycle-free) sets of edges in graphs;

I etc.
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Remark
Not all matroids can be represented by vectors or graphs
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Transitivity

Not all data can be represented by matroids.

Matroids: If {x , y} are dependent and {y , z} are dependent,
then {x , z} are dependent.

I (Linear dependence: If x is a multiple of y and y
is a multiple of z , then x is a multiple of z .)

I (Graphs: If x , y are parallel edges and y , z are
parallel edges, then x , z are parallel edges.)

x y z

Statistics: Not always! But we will look for conditions on data
that allow dependence to be modeled by matroids.
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Independent sets

I ∅ is independent.

I Any subset of an independent set is also independent.

I If I1, I2 independent, and |I2| = |I1|+ 1, then ∃x ∈ I2 − I1 such
that I1 ∪ {x} is independent.
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Bases

Maximally independent sets

I ∅ is not a basis.

I One basis cannot be a proper subset of another basis.

I If B1,B2 are bases and x ∈ B, then ∃y ∈ B2 such that
(B1 − {x}) ∪ {y} is a basis.
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Circuits

Minimally dependent sets

I ∅ is not a circuit.

I One circuit cannot be a proper subset of another circuit.

I (C1 ∪ C2)− {x} contains a circuit for distinct circuits C1,C2.
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Rank function

Size of maximal independent subset of a set

I r(∅) = 0.

I r(S ∪ {x}) = r(S) or r(S) + 1.

I If r(S) = r(S ∪ {x}) = r(S ∪ {y}), then r(S ∪ {x , y}) = r(S).
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Closure axioms

A matroid on ground set E may be defined by closure axioms:

cl : 2E → 2E

I Closure axioms:
I A ⊆ cl(A)
I If A ⊆ B, then cl(A) ⊆ cl(B)
I cl(cl(A)) = cl(A)

I Exchange axiom: If x ∈ cl(A ∪ y)− cl(A), then y ∈ cl(A ∪ x)

For us, x ∈ cl(A) means that knowing the values of all the
variables in A implies knowing something about the value of x .
(Sort of: x is a function of A, with statistical noise and fuzziness.)



Invertibility

Exchange axiom: If x ∈ cl(A ∪ y)− cl(A), then y ∈ cl(A ∪ x)

I x ∈ cl(A ∪ y)− cl(A) means that in using A ∪ y to determine
x , we must use (can’t ignore) y . (“model parsimony”)

I y ∈ cl(A∪ x) means we can “solve” for y in terms of x and A.
(This is sort of invertibility.)

Easiest way for a function (only way for continuous function) to be
invertible is to be monotone in each variable. Fortunately, implied
by a common statistical assumption:

Definition (MTP2)

(Multivariate Totally Positive of order 2.)
f (u)f (v) ≤ f (u ∧ v)f (u ∨ v), where f is probability distribution, u
and v are vectors of variable values, and ∧ and ∨ denote
element-wise minimum and maximum.
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Multivariate Totally Positive of order 2

Definition (MTP2)

f (u)f (v) ≤ f (u ∧ v)f (u ∨ v), where f is probability distribution, u
and v are vectors of variable values, and ∧ and ∨ denote
element-wise minimum and maximum.

u

v
u ∧ v

u ∨ v



Composition

Closure axioms

I A ⊆ cl(A) (easy)

I If A ⊆ B, then cl(A) ⊆ cl(B) (easy)

I cl(cl(A)) = cl(A) (not so easy)

Example

When A = x is a single element and cl(x) = {x , y}. We need to
avoid z ∈ cl{x , y} for z 6= x , y . In other words, z depends on y ,
and y depends on x should mean that z depends on x directly.
This is a kind of transitivity.

More generally, if Z is determined by Y1, . . . ,Yp, and each Yi is
determined by X1, . . . ,Xq, then Z should be determined directly by
X1, . . . ,Xq. This is a kind of composition.

Remark
MTP2 means the dependence will be strong enough to guarantee
transitivity, and more generally composition.
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Dependence axioms

How we actually show that we have a matroid. The dependent sets
D in a matroid satisfy:

1. ∅ 6∈ D
2. If D ∈ D and D ′ ⊇ D, then D ′ ∈ D
3. If I 6∈ D, but I ∪ {x , y}, I ∪ {y , z} ∈ D, then I ∪ {x , z} ∈ D.

We can prove that MTP2 distributions satisfy this, using
singleton-transitivity of conditional dependence when data is
MTP2.



Example: Cancer genes

Non-matroid analysis: Clusters
{1, 3, 4}, {2, 5, 6, 7, 13}, {8, 9, 11, 12}, {10}.

Matroid analysis:

1 3 4 11
2 5 6 7 13

8 9 12

rank 2
⊕ 10

Remark
This suggests two independent, possibly latent, variables explaining
the left side of the diagram.
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