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Twisting of Composite Torus Knots
MoHAMED AIT NOUH

ABSTRACT. We prove that the family of connected sums of torus knots
TQ2,p)#T2,q)#T(2,r) is nontwisted for any odd positive integers
p,q,r >3, partially answering in the positive a conjecture of Tera-
gaito [19].

1. Introduction

Let K be a knot in the 3-sphere 3, and D? a disk intersecting K in its interior.
Let n be an integer. A (—%)—Dehn surgery along C = 3 D? changes K into a new
knot K, in S3. Let w = 1k(d D2, L). We say that K, is obtained from K by (n, w)-

twisting (or simply twisting). Then we write K (n—’(f) K, or K (n—’;u) K(n,w). We
say that K, is an (n, w)-twisted knot (or simply a twisted knot) if K is the unknot
(see Figure 1).

An easy example is depicted in Figure 2, where we show that the right-handed
trefoil T (2, 3) is obtained from the unknot 7' (2, 1) by a (41, 2)-twisting (in this
case, n = +1 and w = +2). A less obvious example is given in Figure 3, where
it is shown that the composite knot 7' (2, 3) # T(2,5) can be obtained from the
unknot by a (+1, 4)-twisting (in this case, n = +1 and w = +4); see [10]. Here,
T (2, q) denotes the (2, g)-torus knot (see [ 1]).

Active research on twisting of knots started around 1990. One pioneer was
the author’s Ph.D. thesis advisor Y. Mathieu, who asked the following questions
in [13].

QUESTION 1.1. Is every knot in §* twisted? If not, what is the minimal number
of twisting disks?

QUESTION 1.2. Is every twisted knot in $3 prime?

To answer Question 1.1, Miyazaki and Yasuhara [15] were the first to give an
infinite family of knots that are nontwisted. In particular, they showed that the
granny knot, that is, the product of two right-handed trefoil knots, is the smallest
nontwisted knot. In his Ph.D. thesis [3], the author showed that 7'(5, 8) is the
smallest nontwisted torus knot. This was followed by a joint work with Yasuhara
[4], in which we gave an infinite family of nontwisted torus knots (i.e., T (p, p+7)
for any p > 7) using some techniques derived from old gauge theory. On the other
hand, Ohyama [16] showed that any knot in $3 can be untied by (at most) two
disks.
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To answer Question , Hayashi and Motegi [10] and M. Teragaito [20]

independently found examples of composite twisted knots (see Figure 3). In
particular, Goodman-Strauss [8] showed that any composite knot of the form
T(p,q) #T(—q,p + q) is a twisted knot for any coprime positive integers
1 < p < g. More generally, Hayashi and Motegi [10] and Goodman-Strauss [8]
proved independently that only single twisting (i.e., |z| = 1) can yield a compos-
ite knot. The tools used were combinatorial methods as in CGLS [5]. Moreover,
Goodman-Strauss [8] proved that K1 and K_1 cannot both be composite and clas-
sified all composite knots of the form K| # K», where K| and K, are both prime
knots (for an extensive list of twisted composite knots, we refer the reader to the
appendix of Goodman-Strauss’s paper [8]). However, there is no known twisted
knot with three or more factors, that is, k = k1 # ko # - - - # k,,,, where k; is a prime
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knot for i = 1,2,...,m, and m > 3, which motivates the still open Teragaito’s
conjecture.

CONJECTURE 1.1 (Teragaito [19]). Any composite knot with three or more factors
is nontwisted.

In this paper, we prove the following theorem.

THEOREM 1.1. T (2, p)#T(2,q) #T(2,r) is not twisted for any odd positive in-
tegers p,q,r > 3.

2. Preliminaries

In what follows, let X be a smooth, closed, oriented, simply connected 4-
manifold. Then the second homology group H>(X; Z) is finitely generated (for
details, we refer to the book by Milnor and Stasheff [14]). The ordinary form
qx : Ho(X;Z) x H»(X; Z) — Z given by the intersection pairing for 2-cycles
such that gx (o, B) = o - B is a symmetric unimodular bilinear form. The sig-
nature of this form, denoted o (X), is the difference of the numbers of pos-
itive and negative eigenvalues of a matrix representing gx. Let b;r (X) (resp.
b, (X)) be the rank of the positive (resp. negative) part of the intersection form
of X. The second Betti number is b (X) = b;r(X) + b, (X), and the signature is
o(X) = b;(X) — b, (X). From now on, a homology class in H>(X — B*,0:7)
is identified with its image by the homomorphism

Hy(X — B*, (X — B, Z) = Hy(X — B, Z) —> H»(X: 7).

Recall that CP? is the closed 4-manifold obtained by the free action of
C*=C—{0} on C*>—{(0,0,0)} defined by A(x,y,z) = (Ax, Ay, A7), where
A € C*, that is, CP?> = (C — {(0, 0,0)})/C*. An element of CP? is denoted by
its homogeneous coordinates [x : y : z], which are defined up to the multipli-
cation by A € C*. The fundamental class of the submanifold H = {[x : y : z] €
CP?|x =0} (H = CP') generates the second homology group H(CP?; Z) (see
Gompf and Stipsicz [2]). Since H = CP!, the standard generator of H,(CP?; Z)
is denoted, from now on, by y = [CP']. Therefore, the standard generator of
H>(CP? — B*; Z) is CP' — B> c CP? — B* with complex orientations.

Let « = §? x {#} and B = {*} x S? denote the standard generators of
H>(S? x §%,7Z) such that «®> = 82 =0, o - B =1, and let y (resp. ) be the
standard generators of H,(CP?;Z) (resp. Hp(CP2;7Z)) with y2 = +1 (resp.
72 =—1).

A second homology class & € Hy(X; Z) is said to be characteristic if £ is dual
to the second Stiefel-Whitney class w, (X) or, equivalently,

E-x=x-x (mod?2)
for any x € H>(X; Z) (we leave the details to Milnor and Stasheff [14]).
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EXAMPLE 2.1. (a, b) € Hy(S? x §2; 7) is characteristic if and only if @ and b are
both even.

EXAMPLE 2.2. dy € H>(CP?; Z) is characteristic if and only if d is odd.

The following theorems give obstructions on the genus of an embedded surface
representing either a characteristic class or bounding a knot in a punctured 4-
manifold. Recall that the Arf invariant of a knot K is denoted by Arf(K), o,,(K)
denotes the Tristram p-signature [21], and e;(K) denotes the minimum number
of generators of H»(Xg; Z), where Xk is the 2-fold branched covering of $3
along K.

THEOREM 2.1 (Acosta [1]). Suppose that & is a characteristic homology class
in an indefinite smooth oriented 4-manifold of genus g. Let m = mir1(192+ (X),
by (X)).
D Ifé2 = 0 (X) mod 16, then either 52 =0 (X) or, if not,

(a) If&2 =0 or 52 and o (X) have the same sign, then IE2 —0(X)|/8 <

m+g—1.
) Ifo(X)=0or 52 and o (X) have opposite signs, then |§2 —o(X)|/8 <
m+g—2.

() Ife* =0 (X)+ 8 mod 16, then
(@) If €2 = —8 or £* + 8 and o (X) have the same sign, then |€* + 8 —
o(X)|/8<m+g+1.
() If 0(X) =0 or €2 + 8 and o (X) have opposite signs, then |E* + 8 —
o(X)|/8<m+g.

THEOREM 2.2 (Gilmer [7] and Viro [22]). Let X be an oriented compact 4-

manifold with 3X = S, and K a knot in 3X. Suppose that K bounds a surface

of genus g in X representing an element § in Hy(X; 0X).

(1) If& is divisible by an odd prime d, then |(d> — 1)/ (2d*)£> —o (X) —oq(K)| <
dim H>(X; Zg) + 2g.

(2) If€ is divisible by 2, then |€%/2 — o (X) — o (K)| < dim H>(X; Z») + 2g.

THEOREM 2.3 (Robertello [17]). Let X be an oriented compact 4-manifold with
39X = S3, and K a knot in 3X . Suppose that K bounds a disk in X representing a
characteristic element & in H»(X; 3X). Then (62 — o (X))/8 = Arf(K) (mod 2).

LeEmMA 2.1. If K is a knot obtained by a (—1, w)-twisting from the unknot Ky,
then K bounds a properly embedded smooth disk (D, d D) C (CP?— B4, 3(CP? —
B*)) such that [D] = wy € Hy(CP?> — B*, 3(CP? — B*); 7).

Recall, for convenience of the reader, a proof of Lemma 2. 1. As shown in Figure 4,
let D be a disk on which the (—1, w)-twisting is performed. Note that the (41)-
Dehn surgery on D = C changes K to K. Regard Ko and D as contained in
the boundary of a four-dimensional O-handle 4°. Then attach a 2-handle 4 to h°
along 9D with framing +1. Since CP? = h® U % U h3 with h° = B* and h3 =
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B4, the resulting 4-manifold O UR? is diffeomorphic to CP? — B4 (see [12]).
Let (A,dA) C (B*, 0B*= S%) bea compact and orientable disk with dA = K.
Since 1k(Kg, 3D) = w, we can check that [A] = wy € H,(CP?> — B*, $3;7),
where y is the standard generator of H>(CP? — B*, $3. 7).

LEmMMA 2.2 (Nakanishi [15]). Suppose that K is obtained from a trivial knot K
by (n, w)-twisting. If w is even, then e (K) < 2.

LEmMMA 2.3 (Ait Nouh [2]). The d-signature of a (2, q)-torus knot T (2, q) is given
by the formula

0a(T(2.9) =—(q —1)— [i}

2d
To prove Theorem 1.1, we recall the definition of band surgery.
Let L be a c-component oriented link. Let By, ..., B, be mutually disjoint ori-
ented bands in S3 such that B, "L =8B, NL = q; Ua], where ay, af, ..., ap, oy

are disjoint connected arcs. The closure of LU3dB; U ---U 3By is also a link L'.

DEFINITION 2.1. If L’ has the orientation compatible with the orientation of
L—U—y,  poiVejand U, ,(@Bi —a; Ua)), then L' is called the link ob-
tained by the band surgery along the bands By, ..., Bp. If ¢ = b + 1, then this
operation is called a fusion.

ExaMPLE 2.3. Let L(p,q) = C1 U---UC, UCj U---UCy denote the
((p,0), (g, 0))-cable on the Hopf link with linking number 1 (see Figure 5). Then
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T(2,5) (resp. T(2,7)) can be obtained from L(2, 2) (resp. L(2, 4)) by fusion (see
Figure 6).

3. Proof of Theorem

To prove Theorem 1.1, we need the following proposition.

ProrosITION 3.1. T (2, p) #T(2,q) # T (2,r) is obtained from L(2,g* + £) by
adding b = g* + € 4+ 5 bands, where g* denotes the 4-ball genus of T (2, p) #
TR2,q)#TQ2,r), and € is the number of integers in the set {p,q,r} that are
congruent to 3 modulo 4. In particular, there is a cobordism of genus two between
L2,g*+0)and TR, p)#T2,q)#T(2,r), where g* + £ is always even.

Proof. Figure 7 shows thatif p =1 (mod 4) (resp. p =3 (mod 4)), then T (2, p)
is obtained from L(2, pT_l) (resp. L(2, pTH)) by fusion, that is, by adding
pT_l + 1 (resp. PTH + 1) bands. Therefore, to prove the proposition, there are four
cases to distinguish:

Casel. p=g=r=1 (mod 4).

Casell. p=3andg=r=1 (mod 4).
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Caselll. p=g=3 (mod 4) andr =1 (mod 4).
CaselV. p=q=r=3 (mod 4).

By a band surgery with b =2, L(2, g* + £) can be turned into a connected
sum of L(2, 251, L(2,45Y), L(2, "), which has g* + ¢+ 4 components.
Since each of the summands can be turned into 7'(2, p), T(2,q), T(2,r), re-
spectively, by a fusion, we have that T (2, p) # T (2,q) # T (2, r) can be obtained
from L(2, g* + ¢) by a band surgery with b = g* + ¢ + 5. Since the proofs of
these cases are similar, we provide more details for the case £ = 0.

Casel. p=qg=r=1 (mod 4).

This is equivalent to £ = 0. As shown in Figures 7 and 8, k = T (2, p) #
T(2,q)#T (2, r) can be obtained from the link L (2, 252 + 451 4 151y = 1.2, ¢%)
by adding the number of bands equal to

p—1 qg—1 r—1
b= > + 5 + > +5
=g"+5.

Note that ¢ = %ﬁl + % + rgl + 2 or, equivalently, ¢ = g* + 2. Since g, =
%, we have that g. =2 and g* + ¢ = g* is even.

Note that in all four cases, b = g* + £ + 5 and ¢ = g* + £ + 2, and, therefore,
there is a cobordism of genus g. = # (=2) (see [0]) between L(2, g* + 3)

and k. O

Proof of Theorem 1.1. Assume for a contradiction that K =T 2, p)#T(2,q) #
T (2, r) can be obtained by (n, w)-twisting from an unknot K. Since e>(T (2, p) #
TR2,q)#T(2,r)) >2,by Lemma 2.2, wis odd. Since K is a composite knot, n =
+1 (see [10; 9]). The following proofs are based on the gluing of two punctured
standard 4-manifolds, as depicted in Figure 9.

Case 1. Assume that n = +1. Then K = T(=2, p) # T(—2,q) # T (=2, r)
can be obtained by (—1, w)-twisting along an unknot Ky, the inverse of the
mirror-image of Ko (see [3]). By Lemma this yields that K bounds a disk
(D, dD) C (CP? — B*, 3(CP? — B*) = §%) such that [D] = wy € H»(CP? —
B*, §3: 7), where y denotes the standard generator of H>(CP?; Z) with y2 = +1.

On the other hand, there exist a 4-ball J and a mutually disjoint union
of g* + £+ 2 properly embedded 2-disks Ay, Az, ..., Agrieqo such that A =
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U= 42 A, bounds L(2, g* + £) with 0 < £ <3 in §2 x §2 — J and [A] =
20+ (g* + 0B € Hy(S? x §? — J,3(5? x 82 — J) = §3; Z), where «, 8 denote
the standard generators of Hz(S2 x 2 7)) with = ﬂ2 =0,a-B8=1,and g*
denotes the 4-ball genus of K.

Since K is obtained from L(2,g* + £) by the band surgery described in
Proposition 3.1, there exists a (g* + ¢ + 3)-punctured genus-two surface F in
$3 %[0, 1] C J such that we can identify this band surgery with FN (83 x{1/2}),
AF =L(2, g* 4+ £) Uk with L(2, g* + ¢) lies in $3 x {0} = 3J x {0}, and K lies
in §3 x {1} = 8J x {1}. The 3-sphere S> x {1} (= 3J x {1}) bounds a 4-ball
B* C J. The surface F = A U F is a smooth genus-two surface properly embed-
ded in §? x S — B* and with boundary K such that

[F1=2a + (g +0)B € Hy(S*> x S — B*, 3(5? x > — BH = 3, 7).
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[D] = wy € Hy(CP? — B*, $*: 7) Ccp? — B*

A= 20+ (g" +0)8 € Hy($* x §* - B, 5% 1) 5% x §* — B*

Figure 9

The genus-two smooth and closed surface ¥ = F' U D satisfies
[Z]=2a+ (g*+ 0B + wy € Hy(S? x S>#CP?; 7).
By Lemma 2.2, w is odd, and by Proposition 3.1, g* + £ is even. Then, § = [X]
is a characteristic class in Ha(S2 x S2#CP2; 7). Furthermore, X = S2 x S # CP2
is homeomorphic to CP? # CP2 # CP? (e.g., see Scorpan’s book [18], p. 239, or

Corollary 4.3 in Kirby’s book [12], p. 11). Note that £ and o (X) have the same
signs, m = 1, and g = 2. Therefore, by Theorem 2.1(1)(a) and Theorem 2.1(2)(a),

£2 —o(X)| _

3
3 =

or, equivalently,

4g*+0) +w?—1 -

3 s

This yields that the only possibilities are g* = 3 or 4 and w = +1; equivalently,

K=TQ23)H#TR,3H#T2,3),then =3 0or K=TQ2,3)#T(2,3)#T(2,5),

and then £ = 2 with @ = £1. Then K would bound a disk (D, 9D) C (CP2 —
B*, 3(CP? — B*)) such that

£ =[D] ==y € Hy(CP2 — B* 3(CP2 — B%); Z),

where y is the standard generator of H> (W — B*, B(W — B%); Z) with 7% =
—1, and therefore |€2 — o(X)|/8 = 0. This contradicts Theorem since
Arf(K) = 1.

3.
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Case II. Assume that n = —1. Then there are two cases to exclude.

Case Il(a). If w is divisible by a prime d > 3, then by Lemma .k
bounds a smooth disk (D, dD) c (CP? — B*, 3(CP?* — B*) = §3) such that
E=[D]=wy € Hz((C]P’2 — B*; §3; 7). By Lemma the signatures are

o(K)=—(p+qg+r—3) and

oum=—@—n—[%]—@—n—{i}—u—n—F% (see [2]).

This contradicts Theorem
Case I1(b). If = £1, then by the same argument as in Case I, this would yield
the existence of a genus-two surface that satisfies

E=[X]=20+ (g + 0B+ 7 € Hy(S* x S2#CP2; 7).

Ifwelet X = S2 x §2 # CIP2, then £ and o (X) have opposite signs with m = 1
and g = 2. Therefore, by Theorem 2.1(1)(b) and Theorem 2.1(2)(b),

g2 -0l _,
3 =
or, equivalently, g* + £ < 4. This yields that the only possibilities are g* = 3 or
4; equivalently, K =TQ2,3)#TQ2,3)#T(2,3),then £ =3 or K =T(2,3) #
T(2,3)#T(2,5), and then £ = 2. Therefore, g* + £ = 6, a contradiction. O
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