Twisting of Composite Torus Knots

MOHAMED AIT NOUH

ABSTRACT. We prove that the family of connected sums of torus knots T(2, p) # T(2, q) # T(2, r) is nontwisted for any odd positive integers $p, q, r \ge 3$, partially answering in the positive a conjecture of Teragaito [19].

1. Introduction

Let K be a knot in the 3-sphere S^3 , and D^2 a disk intersecting K in its interior. Let n be an integer. A $(-\frac{1}{n})$ -Dehn surgery along $C = \partial D^2$ changes K into a new knot K_n in S^3 . Let $\omega = \text{lk}(\partial D^2, L)$. We say that K_n is obtained from K by (n, ω) -twisting (or simply twisting). Then we write $K \stackrel{(n,\omega)}{\to} K_n$ or $K \stackrel{(n,\omega)}{\to} K(n,\omega)$. We say that K_n is an (n,ω) -twisted knot (or simply a twisted knot) if K is the unknot (see Figure 1).

An easy example is depicted in Figure 2, where we show that the right-handed trefoil T(2,3) is obtained from the unknot T(2,1) by a (+1,2)-twisting (in this case, n=+1 and $\omega=+2$). A less obvious example is given in Figure 3, where it is shown that the composite knot T(2,3) # T(2,5) can be obtained from the unknot by a (+1,4)-twisting (in this case, n=+1 and $\omega=+4$); see [10]. Here, T(2,q) denotes the (2,q)-torus knot (see [11]).

Active research on twisting of knots started around 1990. One pioneer was the author's Ph.D. thesis advisor Y. Mathieu, who asked the following questions in [13].

QUESTION 1.1. Is every knot in S^3 twisted? If not, what is the minimal number of twisting disks?

QUESTION 1.2. Is every twisted knot in S^3 prime?

To answer Question 1.1, Miyazaki and Yasuhara [15] were the first to give an infinite family of knots that are nontwisted. In particular, they showed that the granny knot, that is, the product of two right-handed trefoil knots, is the smallest nontwisted knot. In his Ph.D. thesis [3], the author showed that T(5,8) is the smallest nontwisted torus knot. This was followed by a joint work with Yasuhara [4], in which we gave an infinite family of nontwisted torus knots (i.e., T(p, p+7) for any $p \ge 7$) using some techniques derived from old gauge theory. On the other hand, Ohyama [16] showed that any knot in S^3 can be untied by (at most) two disks.

Figure 1

Figure 2

Figure 3

To answer Question 1.2, Hayashi and Motegi [10] and M. Teragaito [20] independently found examples of composite twisted knots (see Figure 3). In particular, Goodman-Strauss [8] showed that any composite knot of the form T(p,q) # T(-q,p+q) is a twisted knot for any coprime positive integers 1 . More generally, Hayashi and Motegi [10] and Goodman-Strauss [8] proved independently that only single twisting (i.e., <math>|n| = 1) can yield a composite knot. The tools used were combinatorial methods as in CGLS [5]. Moreover, Goodman-Strauss [8] proved that K_1 and K_{-1} cannot both be composite and classified all composite knots of the form $K_1 \# K_2$, where K_1 and K_2 are both prime knots (for an extensive list of twisted composite knots, we refer the reader to the appendix of Goodman-Strauss's paper [8]). However, there is no known twisted knot with three or more factors, that is, $k = k_1 \# k_2 \# \cdots \# k_m$, where k_i is a prime

knot for i = 1, 2, ..., m, and $m \ge 3$, which motivates the still open Teragaito's conjecture.

Conjecture 1.1 (Teragaito [19]). Any composite knot with three or more factors is nontwisted.

In this paper, we prove the following theorem.

THEOREM 1.1. T(2, p) # T(2, q) # T(2, r) is not twisted for any odd positive integers $p, q, r \ge 3$.

2. Preliminaries

In what follows, let X be a smooth, closed, oriented, simply connected 4-manifold. Then the second homology group $H_2(X;\mathbb{Z})$ is finitely generated (for details, we refer to the book by Milnor and Stasheff [14]). The ordinary form $q_X: H_2(X;\mathbb{Z}) \times H_2(X;\mathbb{Z}) \longrightarrow \mathbb{Z}$ given by the intersection pairing for 2-cycles such that $q_X(\alpha,\beta) = \alpha \cdot \beta$ is a symmetric unimodular bilinear form. The signature of this form, denoted $\sigma(X)$, is the difference of the numbers of positive and negative eigenvalues of a matrix representing q_X . Let $b_2^+(X)$ (resp. $b_2^-(X)$) be the rank of the positive (resp. negative) part of the intersection form of X. The second Betti number is $b_2(X) = b_2^+(X) + b_2^-(X)$, and the signature is $\sigma(X) = b_2^+(X) - b_2^-(X)$. From now on, a homology class in $H_2(X - B^4, \partial; \mathbb{Z})$ is identified with its image by the homomorphism

$$H_2(X - B^4, \partial(X - B^4); \mathbb{Z}) \cong H_2(X - B^4; \mathbb{Z}) \longrightarrow H_2(X; \mathbb{Z}).$$

Recall that \mathbb{CP}^2 is the closed 4-manifold obtained by the free action of $\mathbb{C}^* = \mathbb{C} - \{0\}$ on $\mathbb{C}^3 - \{(0,0,0)\}$ defined by $\lambda(x,y,z) = (\lambda x,\lambda y,\lambda z)$, where $\lambda \in \mathbb{C}^*$, that is, $\mathbb{CP}^2 = (\mathbb{C}^3 - \{(0,0,0)\})/\mathbb{C}^*$. An element of \mathbb{CP}^2 is denoted by its homogeneous coordinates [x:y:z], which are defined up to the multiplication by $\lambda \in \mathbb{C}^*$. The fundamental class of the submanifold $H = \{[x:y:z] \in \mathbb{CP}^2 | x = 0\}$ ($H \cong \mathbb{CP}^1$) generates the second homology group $H_2(\mathbb{CP}^2; \mathbb{Z})$ (see Gompf and Stipsicz [8]). Since $H \cong \mathbb{CP}^1$, the standard generator of $H_2(\mathbb{CP}^2; \mathbb{Z})$ is denoted, from now on, by $\gamma = [\mathbb{CP}^1]$. Therefore, the standard generator of $H_2(\mathbb{CP}^2 - B^4; \mathbb{Z})$ is $\mathbb{CP}^1 - B^2 \subset \mathbb{CP}^2 - B^4$ with complex orientations.

Let $\alpha = S^2 \times \{\star\}$ and $\beta = \{\star\} \times S^2$ denote the standard generators of $H_2(S^2 \times S^2; \mathbb{Z})$ such that $\alpha^2 = \beta^2 = 0$, $\alpha \cdot \beta = 1$, and let γ (resp. $\bar{\gamma}$) be the standard generators of $H_2(\mathbb{CP}^2; \mathbb{Z})$ (resp. $H_2(\overline{\mathbb{CP}^2}; \mathbb{Z})$) with $\gamma^2 = +1$ (resp. $\bar{\gamma}^2 = -1$).

A second homology class $\xi \in H_2(X; \mathbb{Z})$ is said to be characteristic if ξ is dual to the second Stiefel–Whitney class $w_2(X)$ or, equivalently,

$$\xi \cdot x \equiv x \cdot x \pmod{2}$$

for any $x \in H_2(X; \mathbb{Z})$ (we leave the details to Milnor and Stasheff [14]).

EXAMPLE 2.1. $(a, b) \in H_2(S^2 \times S^2; \mathbb{Z})$ is characteristic if and only if a and b are both even.

EXAMPLE 2.2. $d\gamma \in H_2(\mathbb{CP}^2; \mathbb{Z})$ is characteristic if and only if d is odd.

The following theorems give obstructions on the genus of an embedded surface representing either a characteristic class or bounding a knot in a punctured 4-manifold. Recall that the Arf invariant of a knot K is denoted by Arf(K), $\sigma_p(K)$ denotes the Tristram p-signature [21], and $e_2(K)$ denotes the minimum number of generators of $H_2(X_K; \mathbb{Z})$, where X_K is the 2-fold branched covering of S^3 along K.

THEOREM 2.1 (Acosta [1]). Suppose that ξ is a characteristic homology class in an indefinite smooth oriented 4-manifold of genus g. Let $m = \min(b_2^+(X), b_2^-(X))$.

- (1) If $\xi^2 \equiv \sigma(X) \mod 16$, then either $\xi^2 = \sigma(X)$ or, if not,
 - (a) If $\xi^2 = 0$ or ξ^2 and $\sigma(X)$ have the same sign, then $|\xi^2 \sigma(X)|/8 \le m + g 1$.
 - (b) If $\sigma(X) = 0$ or ξ^2 and $\sigma(X)$ have opposite signs, then $|\xi^2 \sigma(X)|/8 \le m + g 2$.
- (2) If $\xi^2 \equiv \sigma(X) + 8 \mod 16$, then
 - (a) If $\xi^2 = -8$ or $\xi^2 + 8$ and $\sigma(X)$ have the same sign, then $|\xi^2 + 8 \sigma(X)|/8 \le m + g + 1$.
 - (b) If $\sigma(X) = 0$ or $\xi^2 + 8$ and $\sigma(X)$ have opposite signs, then $|\xi^2 + 8 \sigma(X)|/8 \le m + g$.

THEOREM 2.2 (Gilmer [7] and Viro [22]). Let X be an oriented compact 4-manifold with $\partial X = S^3$, and K a knot in ∂X . Suppose that K bounds a surface of genus g in X representing an element ξ in $H_2(X; \partial X)$.

- (1) If ξ is divisible by an odd prime d, then $|(d^2-1)/(2d^2)\xi^2 \sigma(X) \sigma_d(K)| \le \dim H_2(X; \mathbb{Z}_d) + 2g$.
- (2) If ξ is divisible by 2, then $|\xi^2/2 \sigma(X) \sigma(K)| \le \dim H_2(X; \mathbb{Z}_2) + 2g$.

THEOREM 2.3 (Robertello [17]). Let X be an oriented compact 4-manifold with $\partial X = S^3$, and K a knot in ∂X . Suppose that K bounds a disk in X representing a characteristic element ξ in $H_2(X; \partial X)$. Then $(\xi^2 - \sigma(X))/8 \equiv \text{Arf}(K) \pmod{2}$.

LEMMA 2.1. If K is a knot obtained by a $(-1, \omega)$ -twisting from the unknot K_0 , then K bounds a properly embedded smooth disk $(D, \partial D) \subset (\mathbb{CP}^2 - B^4, \partial(\mathbb{CP}^2 - B^4))$ such that $[D] = \omega \gamma \in H_2(\mathbb{CP}^2 - B^4, \partial(\mathbb{CP}^2 - B^4); \mathbb{Z})$.

Recall, for convenience of the reader, a proof of Lemma 2.1. As shown in Figure 4, let D be a disk on which the $(-1,\omega)$ -twisting is performed. Note that the (+1)-Dehn surgery on $\partial D = C$ changes K_0 to K. Regard K_0 and D as contained in the boundary of a four-dimensional 0-handle h^0 . Then attach a 2-handle h^2 to h^0 along ∂D with framing +1. Since $\mathbb{CP}^2 = h^0 \cup h^2 \cup h^3$ with $h^0 \cong B^4$ and $h^3 \cong B^4$

Figure 4

Figure 5 The link L(p,q)

 B^4 , the resulting 4-manifold $h^0 \cup h^2$ is diffeomorphic to $\mathbb{CP}^2 - B^4$ (see [12]). Let $(\Delta, \partial \Delta) \subset (B^4, \partial B^4 \cong S^3)$ be a compact and orientable disk with $\partial \Delta = K_0$. Since $lk(K_0, \partial D) = \omega$, we can check that $[\Delta] = \omega \gamma \in H_2(\mathbb{CP}^2 - B^4, S^3; \mathbb{Z})$, where γ is the standard generator of $H_2(\mathbb{CP}^2 - B^4, S^3; \mathbb{Z})$.

LEMMA 2.2 (Nakanishi [15]). Suppose that K is obtained from a trivial knot K_0 by (n, ω) -twisting. If ω is even, then $e_2(K) \leq 2$.

Lemma 2.3 (Ait Nouh [2]). The d-signature of a (2, q)-torus knot T(2, q) is given by the formula

$$\sigma_d(T(2,q)) = -(q-1) - \left\lceil \frac{q}{2d} \right\rceil.$$

To prove Theorem 1.1, we recall the definition of band surgery.

Let L be a c-component oriented link. Let B_1, \ldots, B_b be mutually disjoint oriented bands in S^3 such that $B_i \cap L = \partial B_i \cap L = \alpha_i \cup \alpha_i'$, where $\alpha_1, \alpha_1', \ldots, \alpha_b, \alpha_b'$ are disjoint connected arcs. The closure of $L \cup \partial B_1 \cup \cdots \cup \partial B_b$ is also a link L'.

DEFINITION 2.1. If L' has the orientation compatible with the orientation of $L - \bigcup_{i=1,...,b} \alpha_i \cup \alpha_i'$ and $\bigcup_{i=1,...,b} (\partial B_i - \alpha_i \cup \alpha_i')$, then L' is called the link obtained by the *band surgery* along the bands B_1, \ldots, B_b . If c = b + 1, then this operation is called a *fusion*.

Example 2.3. Let $L(p,q) = C_1 \cup \cdots \cup C_p \cup C'_1 \cup \cdots \cup C'_q$ denote the ((p,0),(q,0))-cable on the Hopf link with linking number 1 (see Figure 5). Then

Figure 6

T(2,5) (resp. T(2,7)) can be obtained from L(2,2) (resp. L(2,4)) by fusion (see Figure 6).

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following proposition.

PROPOSITION 3.1. T(2, p) # T(2, q) # T(2, r) is obtained from $L(2, g^* + \ell)$ by adding $b = g^* + \ell + 5$ bands, where g^* denotes the 4-ball genus of T(2, p) # T(2, q) # T(2, r), and ℓ is the number of integers in the set $\{p, q, r\}$ that are congruent to 3 modulo 4. In particular, there is a cobordism of genus two between $L(2, g^* + \ell)$ and T(2, p) # T(2, q) # T(2, r), where $g^* + \ell$ is always even.

Proof. Figure 7 shows that if $p \equiv 1 \pmod{4}$ (resp. $p \equiv 3 \pmod{4}$), then T(2, p) is obtained from $L(2, \frac{p-1}{2})$ (resp. $L(2, \frac{p+1}{2})$) by fusion, that is, by adding $\frac{p-1}{2}+1$ (resp. $\frac{p+1}{2}+1$) bands. Therefore, to prove the proposition, there are four cases to distinguish:

Case I. $p \equiv q \equiv r \equiv 1 \pmod{4}$. Case II. $p \equiv 3$ and $q \equiv r \equiv 1 \pmod{4}$.

Figure 7

Case III. $p \equiv q \equiv 3 \pmod{4}$ and $r \equiv 1 \pmod{4}$. Case IV. $p \equiv q \equiv r \equiv 3 \pmod{4}$.

By a band surgery with b=2, $L(2,g^*+\ell)$ can be turned into a connected sum of $L(2,\frac{p\pm 1}{2})$, $L(2,\frac{q\pm 1}{2})$, $L(2,\frac{r\pm 1}{2})$, which has $g^*+\ell+4$ components. Since each of the summands can be turned into T(2,p), T(2,q), T(2,r), respectively, by a fusion, we have that T(2,p) # T(2,q) # T(2,r) can be obtained from $L(2,g^*+\ell)$ by a band surgery with $b=g^*+\ell+5$. Since the proofs of these cases are similar, we provide more details for the case $\ell=0$.

Case I. $p \equiv q \equiv r \equiv 1 \pmod{4}$.

This is equivalent to $\ell=0$. As shown in Figures 7 and 8, k=T(2,p) # T(2,q)#T(2,r) can be obtained from the link $L(2,\frac{p-1}{2}+\frac{q-1}{2}+\frac{r-1}{2})=L(2,g^*)$ by adding the number of bands equal to

$$b = \frac{p-1}{2} + \frac{q-1}{2} + \frac{r-1}{2} + 5$$
$$= g^* + 5.$$

Note that $c=\frac{p-1}{2}+\frac{q-1}{2}+\frac{r-1}{2}+2$ or, equivalently, $c=g^*+2$. Since $g_c=\frac{1-c+b}{2}$, we have that $g_c=2$ and $g^*+\ell=g^*$ is even.

Note that in all four cases, $b = g^* + \ell + 5$ and $c = g^* + \ell + 2$, and, therefore, there is a cobordism of genus $g_c = \frac{1-c+b}{2}$ (= 2) (see [6]) between $L(2, g^* + 3)$ and k.

Proof of Theorem 1.1. Assume for a contradiction that $K \cong T(2, p) \# T(2, q) \# T(2, r)$ can be obtained by (n, ω) -twisting from an unknot K_0 . Since $e_2(T(2, p) \# T(2, q) \# T(2, r)) > 2$, by Lemma 2.2, ω is odd. Since K is a composite knot, $n = \pm 1$ (see [10; 9]). The following proofs are based on the gluing of two punctured standard 4-manifolds, as depicted in Figure 9.

Case I. Assume that n=+1. Then $\bar{K}=T(-2,p)$ # T(-2,q) # T(-2,r) can be obtained by $(-1,\omega)$ -twisting along an unknot \bar{K}_0 , the inverse of the mirror-image of K_0 (see [3]). By Lemma 2.1 this yields that \bar{K} bounds a disk $(D,\partial D)\subset (\mathbb{CP}^2-B^4,\partial(\mathbb{CP}^2-B^4)\cong S^3)$ such that $[D]=\omega\gamma\in H_2(\mathbb{CP}^2-B^4,S^3;\mathbb{Z})$, where γ denotes the standard generator of $H_2(\mathbb{CP}^2;\mathbb{Z})$ with $\gamma^2=+1$.

On the other hand, there exist a 4-ball J and a mutually disjoint union of $g^* + \ell + 2$ properly embedded 2-disks $\Delta_1, \Delta_2, \ldots, \Delta_{g^* + \ell + 2}$ such that $\Delta =$

Figure 8 Case I: $p \equiv q \equiv r \equiv 1 \pmod{4}$

 $\bigcup_{i=1}^{i=g^*+\ell+2} \Delta_i \text{ bounds } L(2,g^*+\ell) \text{ with } 0 \leq \ell \leq 3 \text{ in } S^2 \times S^2 - J \text{ and } [\Delta] = 2\alpha + (g^*+\ell)\beta \in H_2(S^2 \times S^2 - J, \partial(S^2 \times S^2 - J) \cong S^3; \mathbb{Z}), \text{ where } \alpha, \beta \text{ denote the standard generators of } H_2(S^2 \times S^2; \mathbb{Z}) \text{ with } \alpha^2 = \beta^2 = 0, \alpha \cdot \beta = 1, \text{ and } g^* \text{ denotes the 4-ball genus of } K.$

Since K is obtained from $L(2,g^*+\ell)$ by the band surgery described in Proposition 3.1, there exists a $(g^*+\ell+3)$ -punctured genus-two surface \hat{F} in $S^3 \times [0,1] \subset J$ such that we can identify this band surgery with $\hat{F} \cap (S^3 \times \{1/2\})$, $\partial \hat{F} = L(2,g^*+\ell) \cup k$ with $L(2,g^*+\ell)$ lies in $S^3 \times \{0\} \cong \partial J \times \{0\}$, and K lies in $S^3 \times \{1\} \cong \partial J \times \{1\}$. The 3-sphere $S^3 \times \{1\}$ ($\cong \partial J \times \{1\}$) bounds a 4-ball $B^4 \subset J$. The surface $F = \Delta \cup \hat{F}$ is a smooth genus-two surface properly embedded in $S^2 \times S^2 - B^4$ and with boundary K such that

$$[F] = 2\alpha + (g^* + \ell)\beta \in H_2(S^2 \times S^2 - B^4, \partial(S^2 \times S^2 - B^4) \cong S^3; \mathbb{Z}).$$

Figure 9

The genus-two smooth and closed surface $\Sigma = F \cup D$ satisfies

$$[\Sigma] = 2\alpha + (g^* + \ell)\beta + \omega\gamma \in H_2(S^2 \times S^2 \# \mathbb{CP}^2; \mathbb{Z}).$$

By Lemma 2.2, ω is odd, and by Proposition 3.1, $g^* + \ell$ is even. Then, $\xi = [\Sigma]$ is a characteristic class in $H_2(S^2 \times S^2 \# \mathbb{CP}^2; \mathbb{Z})$. Furthermore, $X = S^2 \times S^2 \# \mathbb{CP}^2$ is homeomorphic to $\mathbb{CP}^2 \# \mathbb{CP}^2 \# \mathbb{CP}^2$ (e.g., see Scorpan's book [18], p. 239, or Corollary 4.3 in Kirby's book [12], p. 11). Note that ξ^2 and $\sigma(X)$ have the same signs, m = 1, and g = 2. Therefore, by Theorem 2.1(1)(a) and Theorem 2.1(2)(a),

$$\frac{|\xi^2 - \sigma(X)|}{8} \le 3$$

or, equivalently,

$$\frac{4(g^* + \ell) + \omega^2 - 1}{8} \le 3.$$

This yields that the only possibilities are $g^* = 3$ or 4 and $\omega = \pm 1$; equivalently, K = T(2,3) # T(2,3) # T(2,3), then $\ell = 3$ or K = T(2,3) # T(2,3) # T(2,5), and then $\ell = 2$ with $\omega = \pm 1$. Then K would bound a disk $(D, \partial D) \subset (\overline{\mathbb{CP}^2} - B^4, \partial(\overline{\mathbb{CP}^2} - B^4))$ such that

$$\xi = [D] = \pm \bar{\gamma} \in H_2(\overline{\mathbb{CP}^2} - B^4, \partial(\overline{\mathbb{CP}^2} - B^4); \mathbb{Z}),$$

where $\bar{\gamma}$ is the standard generator of $H_2(\overline{\mathbb{CP}^2} - B^4, \partial(\overline{\mathbb{CP}^2} - B^4); \mathbb{Z})$ with $\bar{\gamma}^2 = -1$, and therefore $|\xi^2 - \sigma(X)|/8 = 0$. This contradicts Theorem 2.3 since $\operatorname{Arf}(K) = 1$.

Case II. Assume that n = -1. Then there are two cases to exclude.

Case II(a). If ω is divisible by a prime $d \geq 3$, then by Lemma 2.1, k bounds a smooth disk $(D, \partial D) \subset (\mathbb{CP}^2 - B^4, \partial(\mathbb{CP}^2 - B^4) \cong S^3)$ such that $\xi = [D] = \omega \gamma \in H_2(\mathbb{CP}^2 - B^4; S^3; \mathbb{Z})$. By Lemma 2.3 the signatures are

$$\sigma(K) = -(p+q+r-3) \quad \text{and} \quad$$

$$\sigma_d(K) = -(p-1) - \left\lceil \frac{p}{2d} \right\rceil - (q-1) - \left\lceil \frac{q}{2d} \right\rceil - (r-1) - \left\lceil \frac{r}{2d} \right\rceil \quad (\text{see [2]}).$$

This contradicts Theorem 2.2.

Case II(b). If $\omega = \pm 1$, then by the same argument as in Case I, this would yield the existence of a genus-two surface that satisfies

$$\xi = [\Sigma] = 2\alpha + (g^* + \ell)\beta + \bar{\gamma} \in H_2(S^2 \times S^2 \# \overline{\mathbb{CP}^2}; \mathbb{Z}).$$

If we let $X = S^2 \times S^2 \# \overline{\mathbb{CP}^2}$, then ξ^2 and $\sigma(X)$ have opposite signs with m = 1 and g = 2. Therefore, by Theorem 2.1(1)(b) and Theorem 2.1(2)(b),

$$\frac{|\xi^2 - \sigma(X)|}{8} \le 2$$

or, equivalently, $g^* + \ell \le 4$. This yields that the only possibilities are $g^* = 3$ or 4; equivalently, K = T(2,3) # T(2,3) # T(2,3), then $\ell = 3$ or K = T(2,3) # T(2,3) # T(2,5), and then $\ell = 2$. Therefore, $g^* + \ell = 6$, a contradiction.

ACKNOWLEDGMENTS. I would like to thank the referee for his valuable suggestions and the University of El Paso at Texas (UTEP), Mathematical Sciences Department, for hospitality.

References

- [1] D. Acosta, *Spin orbifolds and the minimal genus problem*, Dissertation, Tulane University, 1997.
- [2] M. Ait Nouh, Genera and degrees of torus knots in \mathbb{CP}^2 , J. Knot Theory Ramifications 18 (2009), no. 9, 1299–1312.
- [3] ______, Les nœuds qui se dénouent par twist de Dehn dans la 3-sphère, Ph.D. thesis, University of Provence, Marseille, France, 2000.
- [4] M. Ait Nouh and A. Yasuhara, *Torus knots that cannot be untied by twisting*, Rev. Mat. Complut. XIV (2001), no. 8, 423–437.
- [5] M. Culler, C. M. Gordon, J. Luecke, and P. B. Shalen, *Dehn surgery on knots*, Ann. of Math. 125 (1987), 237–300.
- [6] R. Fox and J. Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257–267.
- [7] P. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc. 264 (1981), 353–380.
- [8] R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby calculus, Grad. Stud. Math. 20, Amer. Math. Society, Providence, Rhode Island, 1999.
- [9] C. Goodman-Strauss, On composite twisted unknots, Trans. Amer. Math. Soc. 349 (1997), 4429–4463.
- [10] C. Hayashi and K. Motegi, Only single twisting on unknots can produce composite knots, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4897–4930.

- [11] A. Kawauchi, A survey on knot theory, Birkhauser-Verlag, Basel-Boston-Berlin, 1996.
- [12] R. C. Kirby, The topology of 4-manifolds, Lecture Notes in Math., Springer-Verlag, 1980.
- [13] Y. Mathieu, Unknotting, knotting by twists on disks and property P for knots in S³, Knots 90: proc. 1990 Osaka conf. on knot theory and related topics, pp. 93–102, de Gruyter, 1992.
- [14] J. Milnor and J. D. Stasheff, *Characteristic classes*, Princeton University Press, 1974.
- [15] K. Miyazaki and A. Yasuhara, *Knots that cannot be obtained from a trivial knot by twisting*, Contemp. Math. 164 (1994), 139–150.
- [16] Y. Ohyama, Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madr. 7 (1994), 289–305.
- [17] R. Robertello, An Arf invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543–555.
- [18] A. Scorpan, *The wild world of 4-manifolds*, Amer. Math. Soc., Providence, Rhode Island, 2005.
- [19] M. Teragaito, *Composite knots trivialized by twisting*, J. Knot Theory Ramifications 1 (1992), no. 4, 467–470.
- [20] ______, Twisting operations and composite knots, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1623–1629.
- [21] A. G. Tristram, *Some cobordism invariants for links*, Math. Proc. Cambridge Philos. Soc. 66 (1969), 251–264.
- [22] O. Y. Viro, *Link types in codimension-2 with boundary*, Uspekhi Mat. Nauk 30 (1970), 231–232 (Russian).

Department of Mathematical Sciences, Bell Hall 144 The University of Texas at El Paso 500 University Avenue El Paso, TX 79968 USA

manouh@utep.edu