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We prove that the (−1, 2)-cable of the right-handed trefoil knot, depicted
in Figure 1 (a), is the smallest non-twisted prime satellite knot and that
75 , depicted in Figure 1 (b), is the smallest non-twisted hyperbolic knot.
We also give a classification of twisting of knots up to seven crossings.

57M25; 57Q45.

1 Introduction

Let K be a knot. Recall that the (p, q)-cable of K, denoted Kp,q , is a satellite knot
with pattern the (p, q)-torus knot, T(p, q). In other words, Kp,q is a knot drawn on
the boundary of a tubular neighborhood ∂N(K) of K , with slope p

q
with respect to

the standard framing of this torus. Throughout, we will assume p ∈ Z and q ∈ Z (see
Chapter 4,D of Rolfsen’s book [32] for more details on cable knots).

Example 1.1. In this paper, T(2, 3)±1,2 denotes the (±1, 2)-cable of the right-handed
trefoil knot (see Figures 1 and 3), in which case K ∼= T(2, 3) and (p, q) = (±1, 2).

k=T(-1,2)

-1,2

(A)

(B) 75

T(2,3)

Figure 1

http://www.ams.org/mathscinet/search/mscdoc.html?code=57M25,(57Q45.)
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Let K be an unknot in the 3-sphere S3 , and D a disk in S3 meeting K transversely
more than once in the interior (see Figure 2). We assume that | D∩K | is minimal and
greater than one over all isotopies of K in S3 − ∂D. We call such a disk D a twisting
disk for K . Let n be an integer and ω = lk(∂D2,K). Let Kn be a knot in S3 obtained
by n twisting along the disk D, in other words, (−1/n)-Dehn surgery along C = ∂D.
We say that Kn is obtained from K by (n, ω)-twisting. Then we write K

(n,ω)→ Kn .
Sometimes we use the terminology that Kn is a (n, ω)-twisted knot.

Example 1.1. Figure 3 proves that the positive prime satellite knot T(2, 3)1,2 is
(+1, 4)-twisted.

n

n-full  twistings K Kn

C=∂D
(n,ω)-twisting

Figure 2

Figure 3
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Figure 4

Figure 5
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Active research in twisting of knots started around 1990. One pioneer was the authors’
thesis advisor, Y. Mathieu [24], who investigated the general question of whether knots
are twisted or not. Y. Ohyama [29] showed that any knot can be untied by (at most)
two disks. K. Miyazaki and A.Yasuhara [26] were the first to give an infinite family
of knots that are nontwisted, that is, they can not be untied by one single disk (for
any n ∈ Z). Furtheremore, they showed that the granny knot T(2, 3)#T(2, 3) is the
smallest composite nontwisted knot.

Recall that by Thurston’s uniformization theorem for Haken manifolds [36], the knot
complement E(k) = S3 − int N(k) is either a toroidal, or a Seifert, or a hyperbolic
3-manifold. This is respectively equivalent to k is either a satellite, a torus, or a
hyperbolic knot [36].

In his Ph.D. thesis [2], the author showed that the (5, 8)-torus knot is the smallest non-
twisted torus knot (see also [7]). This was followed by a joint work with A. Yasuhara
[7], in which we gave an infinite family of nontwisted torus knots (i.e., T(p, p + 7) for
any p ≥ 7), using some gauge theory results.

J. Hoste and al. proved in [15] that each satellite knot with ≤ 16 crossings is obtained
by substituting one of the tangles, or its reflection, into the shaded area as depicted in
Figure 4. Then, it is easy to conclude from Figure 4 and Table A1 in [15] (see pages 43
and 44) that the smallest satellite knots must have 13 crossings, i.e., the T(±2, 3)±1,2 .

In this paper, we prove the following theorems:

Theorem 1.1 T(2, 3)−1,2 is the smallest non-twisted prime satellite knot.

Theorem 1.2 75 is the smallest non-twisted hyperbolic knot.

Theorem 1.2 gives a classification of twisting of knots up to seven crossings (see Figure
5) taken from [38]. More precisely, we have the following:

Corollary 1.1 75 is the only nontwisted knot in the list of knots up to seven crossings.
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2 Preliminaries

To prove Theorem 1.1 and Theorem 1.2, we need subsections 2.1 through 2.6:

2.1 Embedding of surfaces in 4-manifolds

In what follows, let X be a smooth, closed, oriented and simply connected 4-manifold,
then the second homology group H2(X;Z) is finitely generated (we refer to the book
of Milnor and Stasheff [25]). The ordinary form qX,H2(X;Z)× H2(X;Z) −→ Z given
by the intersection pairing for 2-cycles such that qX(α, β) = α · β , is a symmetric,
unimodular bilinear form. The signature of this form, denoted σ(X) , is the difference
of the numbers of positive and negative eigenvalues of a matrix representing qX . Let
b+2 (X) (resp. b−2 (X)) be the rank of the positive (resp. negative) part of the intersection
form of X . The second Betti number is b2(X) = b+2 (X) + b−2 (X), and the signature is
σ(X) = b+2 (X)− b−2 (X). From now on, a homology class in H2(X − B4, ∂(X − B4);Z) is
identified with its image by the homomorphism

H2(X − B4, ∂(X − B4);Z) ∼= H2(X − B4;Z) −→ H2(X;Z)

Recall that CP2 = (C3 − {(0, 0, 0)})/C∗ i.e. CP2 is the 4-manifold obtained by the
free action of C∗ = C− {0} on C3 − {(0, 0, 0)} defined by λ(x, y, z) = (λx, λy, λz) where
λ ∈ C∗ . An element of CP2 is denoted by its homogeneous coordinates [x, y, z], which
are defined up to the multiplication by λ ∈ C∗ . The fundamental class of the sub-
manifold H = {[x, y, z] ∈ CP2|x = 0}(H ∼= CP1) generates the second homology group
H2(CP2;Z) (see R. E. Gompf and A.I. Stipsicz [11]). Since H ∼= CP1 , then the standard
generator of H2(CP2;Z) is denoted by γ = [CP1]. Therefore, the standard generator
of H2(CP2 − B4;Z) is CP1 − B2 ⊂ CP2 − B4 with the complex orientations.

A second homology class ξ ∈ H2(X;Z) is said to be characteristic if ξ is dual to
the second Stiefel-Whitney class w2(X); or equivalently ξ · x ≡ x · x (mod.2) for any
x ∈ H2(X;Z) (we leave the details to Milnor and Stasheff book [25]).

Example 2.1. (a, b) ∈ H2(S2 × S2;Z) is characteristic iff a and b are both even.

Example 2.2. dγ ∈ H2(CP2;Z)
(

resp. dγ̄ ∈ H2(CP2;Z)
)

is characteristic iff d is odd.

The following theorem is originally due to O.Ya.Viro [40]. It is also obtained by letting
a = [p/2] in the inequality of [10, Remarks(a) on p-371] by P. Gilmer. In what follows,
σp(k) denotes the Tristram’s p-signature of a knot k [39].
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Theorem 2.1 Let X be an oriented and compact 4-manifold with ∂X is the 3-sphere,
and K a knot in ∂X . Suppose K bounds a surface of genus g in X representing an
element ξ in H2(X; ∂X).

(1) If ξ is divisible by an odd prime p, then
∣∣∣∣p2 − 1

2p2 ξ2 − σ(X)− σp(K)
∣∣∣∣ ≤ dim H2(X;Zp) + 2g.

(2) If ξ is divisible by 2, then
∣∣∣∣ξ2

2 − σ(X)− σ(K)
∣∣∣∣ ≤ dim H2(X;Z2) + 2g.

Theorem 2.2 (Rohlin [34]) Let X be an oriented and compact 4-manifold. Suppose Σ

is an embedded smooth, closed and oriented sphere in X and denote ξ = [Σ] ∈ H2(X, ∂X).
Then

(1) If ξ is divisible by an odd prime p, then
∣∣∣∣p2 − 1

2p2 ξ2 − σ(X)
∣∣∣∣ ≤ dim H2(X;Zp).

(2) If ξ is divisible by 2, then
∣∣∣∣ξ2

2 − σ(X)
∣∣∣∣ ≤ dim H2(X;Z2).

Theorem 2.3 (Kikuchi [20]) Let X be a closed, oriented and simply connected 4-
manifold such that (1) H1(X;Z) has no 2-torsion and (2) 0 ≤ b±2 (X) ≤ 3. Let ξ be a
characteristic element of H2(X;Z). If ξ is represented by a 2-sphere, then

ξ2 = σ(X).

Theorem 2.4 (Acosta [1]) Suppose that ξ is a characteristic homology class in an
indefinite smooth oriented 4-manifold of genus g. Let m = min(b+2 (X), b−2 (X)).

(1) If ξ2 ≡ σ(X) (mod 16), then either ξ2 = σ(X) or, if not,

(a) If ξ2 = 0 or ξ2 and σ(X) have the same sign, then
∣∣ξ2 − σ(X)

∣∣
8 ≤ m + g− 1.

(b) If σ(X) = 0 or ξ2 and σ(X) have opposite signs, then
∣∣ξ2 − σ(X)

∣∣
8 ≤ m + g− 2.

(2) If ξ2 ≡ σ(X) + 8 (mod 16), then

(a) If ξ2 = −8 or ξ2+8 and σ(X) have the same sign, then
∣∣ξ2 + 8− σ(X)

∣∣
8 ≤ m + g + 1.

(b) If σ(X) = 0 or ξ2+8 and σ(X) have opposite signs, then
∣∣ξ2 + 8− σ(X)

∣∣
8 ≤ m + g.

The following theorem is the definition of Robertello’s Arf invariant:

Theorem 2.5 (Robertello [31]) Let X be an oriented and compact 4-manifold with
∂X is the 3-sphere, and K a knot in ∂X . Suppose K bounds a disk in X representing

a characteristic element ξ in H2(X; ∂X), then ξ2 − σ(X)
8 ≡ Arf (K) (mod 8).
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2.2 The minimal genus problem in S2 × S2 (Ruberman [33])

The genus function G is defined on H2(X;Z) as follows: For α ∈ H2(X,Z), consider

G(α) = min{genus(Σ)|Σ ⊂ X represents α, i.e., [Σ] = α}

where Σ ranges over closed, connected, oriented surfaces smoothly embedded in the
4-manifold X . Note that G(−α) = G(α) and G(α) ≥ 0 for all α ∈ H2(X;Z) (we leave
the details to Gompf and Stipsicz [11] and Lawson [23]).

Theorem 2.6 (Ruberman) Let α = [S2 × {pt.}] and β = [{pt.} × S2] be the standard
generators of H2(S2 × S2;Z) with α · α = β · β = 0 and α · β = 1. If ab 6= 0 then

G(aα+ bβ) = (| a | −1)(| b | −1).

Obviously G(aα) = G(bβ) = 0.

Proposition 2.1 Let g∗ is the 4-ball genus of k and assume that k be a (n, ω)-twisted
knot with n is even and ω 6= 0, then

(| ω | −1)( | nω |2 − 1) ≤ g∗,

Proof Assume that a knot k is (n, ω)-twisted and assume that n is even and ω 6= 0.
Then k bounds a disk (D, ∂D) ⊂

(
S2 × S2 − B4, ∂(S2 × S2 − B4) ∼= S3) such that:

∂D = k and [D] = −εωα+
| n | ω

2 β ∈ H2(S2 × S2 − B4, S3;Z); with ε = sign(n)

(See Lemma 3.2 in [7], or K. Miyazaki and A. Yasuhara [26], Fig. 4 on p-146 as well
as Cochran and Gompf [8], Fig. 12 on p-506).

Let (Sg∗ , ∂Sg∗) ⊂ (B4, ∂B4 ∼= S3) be a compact, connected and oriented surface such
that ∂Sg∗ = k̄ , where k̄ = −k∗ is the dual knot of k , that is, the inverse of the mirror
image of k [19]. Gluing ∆ and Sg∗ along their boundaries k yields a smooth closed
genus g∗ surface Σg∗ = ∆

⋃
k
Sg∗ embedded in S2 × S2 . By Theorem 2.6 we have,

G(±ωα+
nω
2 β) = (| ω | −1)( | nω |2 − 1).

Therefore, (| ω | −1)( | nω |2 − 1) ≤ g∗ .

As a corrolary of Theorem 2.6 and Proposition 2.1 we have:

Corollary 2.1 Assume that k that is (n, ω)-twisted with g∗ = 1, where n and ω are
both even, then ω = 0 or (n, ω) = (±2,±2).
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2.3 Congruence classes of Knots (Nakanishi and Suzuki [28])

The notion of congruence classes of knots - due to R. H. Fox [9] - is an equivalence
relation generated by certain twistings. A necessary condition for congruence is given
by Nakanishi and Suzuki [28] in terms of Alexander polynomials.

Definition 2.1 [28]

(1) Let n, ω be non-negative integers. We say that a knot K is ω -congruent to a
knot L modulo n, ω and write K ≡ L (mod. n, ω) if there is a sequence of knots
K = K1,K2, ...,Km = L such that for each i ∈ {1, ...,m−1}, Ki+1 is obtained from
Ki by some (ni, ω)-twisting, where ni ≡ 0 (mod n) and ωi ≡ 0 (mod ω)

(2) If ωi = ω for all i ∈ {1, ...,m − 1}, then we say K is ω -congruent to a knot L
modulo n, and we write K ≡ω L (mod. n).

Theorem 2.7 (Nakanishi and Suzuki [28]) If K ≡ L (mod. n, ω) then

(1) ∆K(t)± tr∆L(t) is a multiple of (1− t)σn(tω) for some integer r , where σn(t) =
tn − 1
t − 1 .

(2) If n or ω is even, then ∆K(−1) ≡ ∆L(−1) (mod 2n).

Example 2.3. Figure 6 shows that 75 ≡2 U (mod. 2), where U is the unknot.

Remark 2.1 Let n ≥ 1 and ω ≥ 1. If U
(n,ω)−−−→ Kn then Kn ≡ω U (mod. 2). In

particular, if n or ω is even, then n divides det(K)− 1
2 , where det(K) = ∆K(−1).

2.4 Tristram’s signatures of satellite knots [22, 39]

Let K be a knot, M a Seifert matrix for K and ξ a complex number of modulus 1,
that is, ξ = e2iπx for 0 ≤ x ≤ 1. Denote by σξ(K) the signature of the Hermitian
matrix V(ξ) = (1− ξ)M + (1− ξ̄)Mt . The signature of a knot is σ(K) = σ−1(K) and
the Tristram p-signature (p ≥ 3 and prime) corresponds to x =

p− 1
p

[39]; in which

case 2π
3 ≤ 2πx ≤ π . The matrix V(ξ) is singular if and only if ξ is a root of the

Alexander polynomial ∆(t) of K . The signature of V(z) for z ∈ S1 is continuous at
z = z0 if V(z0) is a nonsingular matrix. Thus, if the arguments of the roots of ∆(t) do
not lie in [2π/3, π] , then Tristram’s p-signatures of K do not depend on p.

The signatures of a satellite knot are determined by those of its constituent parts.
We suppose given an unknotted solid torus V ⊂ S3 and a knot k contained with
(algebraic) winding number q in the interior of V. From this “pattern” and any knot
K we construct a satellite knot K? by taking a faithful embedding f : V 7→ S3 with f
(core of V ) = K , and setting K? = f (k).
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75
(ï2, 2)ïtwisting

(ï2, 2)ïtwisting

Figure 6

Theorem 2.8 (Litherland [22]) If ξ is a root of unity,

σξ(K?) = σξq(K) + σξ(k)

Lemma 2.1 The Tristram’s p-signatures of T(2, 3)−1,2 and 75 are respectively given
as follows:

(1) σp(T(2, 3)−1,2) = −2, and
(2) σp(75) = −4.

Proof (1) To prove that σd(T(2, 3)−1,2) = −2, we use Theorem 2.8. Indeed, Fig-
ure 1 shows that the pattern k is the unknot, q = +2, K = T(2, 3) and
ξ = e2iπ (p−1)

p . Thus, σp(T(2, 3)−1,2) = σξ2(T(2, 3)). The roots of ∆T(2,3)(t) =

t2 − t + 1 are t = e±i π
3 whose arguments do not lie in [2π/3, π], then Tristram’s

p-signatures of T(2, 3) do not depend on p. Since σ(T(2, 3)) = −2, therefore
σp(T(2, 3)−1,2) = −2.

(2) Similarly, the roots of ∆75(t) = 2− 4t + 5t2 − 4t3 + 2t4 are

t ∈ {0.14645± 0.98922i, 0.85355± 0.52101i}.

The respective arguments are (see [37])

θ ∈ {±0.54803411475747,±1.4238179906773} ∼= {±0.17π,±0.45π.}

These arguments do not lie in [2π/3, π], then Tristram’s p -signatures of K do
not depend on p. Since σ(75) = −4, therefore σp(75) = −4.
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2.5 Twisted Graph knots

As M = S3 − int N(K ∪ C) is a Haken manifold, then M has a torus decomposition
in the sense of W. Jaco and P.B. Shalen [16, 17], and K. Johannson [18]: There exists
a finite family of decomposing essential tori T = T1 ∪ T2 . . . ∪ Tn (Possibly T = ∅),
such that each piece of E(k) is either a Seifert fibred space or a simple manifold. Each
piece is either a hyperbolic space (H ), or a torus space (T ), or a cabling space (Ca),
or a decomposing space (Co) [16, 17].

Definition 2.2 A knot in S3 is called a graph knot if its exterior is a graph manifold,
i.e., there is a family of tori which decompose the exterior into Seifert fiber spaces.

Note that a graph knot results from the unknot K0 by cabling and connected sum
operations,

K0
cabling−−−−→ K1

cabling−−−−−−−−−→
connected sum

K2 · · ·
cabling−−−−−−−−−→

connected sum
Km = k.

By the uniqueness of the solid torus decomposition, we may assume from now on that
any companion of a graph knot is either a torus knot, or a composite knot or a cable
knot. If every companion of a graph knot k is an exceptional torus knot, i.e. , of the
form T(p, np ± 1) for (n, p) ∈ Z × Z, then k is called exceptional. Otherwise, k is a
non-exceptional graph knot.

Definition (Exceptional pair). Let K0 be a trivial knot intersecting a disk D exactly
once; K ∪ ∂D be a Hopf link in S3. We define Ki to be an (εi, qi)-cable of Ki−1

for (1 ≤ i ≤ m), i.e., Ki is an essential, simple closed curve on the boundary of a
small tubular neighborhood of Ki−1 wrapping εi (respectively qi ) times in meridional
(respectively longitudinal) direction, where εi = ±1 and qi ≥ 2. Then Km is a trivial
knot in S3 and Km

D,n is an iterated torus knot for any integers m and n; in particular,
K1

D,n is an (ε1 + nq1, q1)-torus knot T(ε1 + nq1, q1) and if further q1 = 2 then K1
D,−ε1

is a trivial knot, see Fig. 1 in which m = 1. A pair (K,D) is called an exceptional pair
of type (ε1, q1; · · · ; εm, qm) if the link K ∪ ∂D is isotopic to a link Km ∪ ∂D for some
integer m. In this paper we will need the following theorem:

Theorem 2.9 (Aı̈t Nouh-Matignon-Motegi [5]) Suppose that K is a trivial knot and
D a twisting disk for K. If a knot KD,n is a graph knot, then | n |= 1 or (K,D) is an
exceptional pair.

If (K,D) is an exceptional pair, then KD,n is an iterated torus knot with Gromov volume
|| KD,n ||= 0 for any integer n. For the definition of Gromov volumes, see [13], [[36],
Section 6], [35].



Smallest non-twisted knots 11

2.6 Classification of Exceptional Graph Knots:

For any twisting pair (K,D), the exterior S3−int N(K
⋃
∂D) is irreducible and boundary-

irreducible. It follows from Thurston’s uniformization theorem [27, 36] and the torus
theorem [16, 18] that S3 − int N(K

⋃
∂D) is Seifert fibered, toroidal or hyperbolic.

We say that a twisting pair (K,D) is Seifert fibered, toroidal or hyperbolic if S3 −
int (K

⋃
∂D) is Seifert fibered, toroidal or hyperbolic, respectively. Recall the follow-

ing theorem that proves that the geometric types of S3−int (K
⋃
∂D) and S3−int N(Kn)

have the same geometric type for any | n |> 1 (see Theorem 1.2 and Proposition 1.4.
in [4]).

Theorem 2.10 (Ait Nouh-Matignon-Motegi [4]) Let (K,D) be a twisting pair and
let n be an integer with | n |> 1.

(1) If (K,D) is a hyperbolic pair, then KD,n is a hyperbolic knot.
(2) If (K,D) is a Seifert fibered pair, then KD,n ∼= T(p, np±1) for some integer p > 0.
(3) If (K,D) is a toroidal pair, then KD,n is a satellite knot for any integer n

Proposition 2.2 If KD,n is a twisted graph knot then n = ±1 or KD,n = K1
D,n
∼= T(q1, nq1 + ε1)

or KD,n = K2
D,n
∼= T(±2, 2n + ε1)(2n−ε1,2) ; for any n ∈ Z.

To prove Proposition 2.2, we need the following lemma:

Lemma 2.2 (a) If m ≥ 3 then Km is knotted.
(b) If Km is unknotted then there are two cases to distinguish according to q1 ≥ 3

or q1 = 2. Let s denote the sign of n, i.e., s =
| n |

n
.

(1) If q1 ≥ 3 then m = 1 and K1
D,n
∼= T(q1, s | n | q1 + ε1).

(2) If q1 = 2 then m = 2 and K2
D,n
∼= T(2s, 2 | n | +ε1)(2s|n|−ε1,2) , i.e., K2

D,n is
the (2s | n | −ε1, 2)-cable of the (2s, 2 | n | −ε1)-torus knot.

Let P1 = P,P2, . . . ,Pm be decomposing pieces of E(K
⋃
∂D). By Claim 5.2 in [5], each

Pi has exactly two boundary components. From Claim 5.5 in [5], P1
⋃

n N(c),P2, . . . ,Pm

are decomposing pieces of E(Kn) = (S3 − int N(K
⋃

C))
⋃

n N(c). Since Kn is a graph
knot, P2, . . . ,Pm are Seifert fiber spaces. Since each Pi has exactly two boundary
components, Pi is a cable space. The triviality of K in S3 implies that Pi is a (εi, qi)-
cable space, where εi = ±1 and qi > 1. It follows that (K,D) is an exceptional pair as
desired.
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Figure 7

2.7 Twisted Positive knots

Definition 2.3 A knot k in S3 is called a positive knot if every crossing of k is positive.

Example 2.4. Figure 11 shows that the knot 75 is a positive knot.

To prove Theorem 1.1, we need the following Proposition:

Proposition 2.3 Let k be a (n, ω)-twisted positive knot. If n < 0 then ω ∈ {0,±1}.

Furthermore, if ω = 0 then | σ(k) |
2 ≤| n |, and if ω = ±1, then Arf (k) = 0.

Proof Assume that k can be obtained by (n, ω)-twisting along an unknot U . If n < 0
then k bounds an embedded smooth disk (D, ∂D) ⊂

(
| n | CP2 − B4, ∂

(
| n | CP2 − B4) ∼= S3)

such that: [D] = ω(γ1 + ....+ γ|n|) ∈ H2(| n | CP2 − B4, S3;Z). Here, | n | CP2 denotes
the connected sum of | n | copies of CP2 i.e. | n | CP2 = CP2# . . .#CP2.︸ ︷︷ ︸

|n| times

Case 1.1. If ω is even, then by Theorem 2.1

∣∣∣∣ | n | ω2

2 − | n | −σ(k)
∣∣∣∣ ≤| n | ⇐⇒ ∣∣∣∣| n | (ω2

2 − 1)− σ(k)
∣∣∣∣ ≤| n |

⇐⇒ − | n |≤| n | (ω
2

2 − 1)− σ(k) ≤| n | .
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n <0

n

n

|n| times

n >0

n

n

n times

Figure 8
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D,n

D,n

D

D

n
n

   T(2n+1,2)
(2n-1,2)

K    U
2 2K 

n>0ε
22 = -1= 2q
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n

n

   T(-(2|n|+1),2)
(-2|n|+1,2)K    U2

n<0
ε

2
2 = +1= 2q

   T(2n-1,2)
(2n+1,2)K    U2 2K 

n>0

D, n

2K D, n

ε
2

2 = +1= 2q

n

n

n times

D

D

Figure 10

75

hhhhv

Positive Crossing Negative Crossing

Figure 11
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Since k is a positive knot, then σ(k) < 0 [30]. Therefore, the only possibility is

that ω = 0, which yields that | σ(k) |
2 ≤| n |.

Case 1.2. If ω ≥ 3 is odd, then let p > 2 denote the smallest prime divisor of ω . By Theo-

rem 2.1
∣∣∣∣| n | ω2 p2 − 1

2p2 − | n | −σp(k)
∣∣∣∣ ≤| n |⇐⇒| n | (ω2 p2 − 1

2p2 − 2) ≤ σp(k). Since

k is a positive knot, then σp(k) < 0 [30]; a contradiction.
Case 1.3. If ω = 1, then by Theorem 2.5, Arf (k) = 0.

3 Proof of Theorems

In what follows, we will work in the smooth category and adopt the following notations.

• U will denote the unknot in the 3-sphere.
• k̄ = −k∗ will denote the dual knot of k , that is, the inverse of the mirror image

of k [19]. In particular, if k = T(2, 3)−1,2 then k̄ = T(−2, 3)+1,2 .
• γ or γi for i ∈ {1, 2, · · · , n} denotes interchangeably the standard generator of

H2(CP2 − B4, S3;Z) with γ · γ = +1 and γi · γi = +1.
• γ̄ or γ̄i for i ∈ {1, 2, ·, n} denotes interchangeably the standard generator of

H2(CP2 − B4, S3;Z) with γ̄ · γ̄ = −1 and γ̄i · γ̄i = −1.
• αi and βi (i = 1, 2) denote the standard generators of H2(S2 × S2 − B4, S3;Z)

with αi = [S2 × {pti}], βi = [{pti} × S2], α2
i = β2

i = 0 and αi · βi = +1.

Lemma 3.1 T(2, 3)±1,2 are the smallest satellite knots.

Proof Hoste et al. showed in their seminal paper [15], that each satellite knot with
≤ 16 crossings is obtained by substituting one of the tangles, or its reflection, into the
shaded disk as shown in Figure ??. In the other hand, they showed that the smallest
satellite knot has 13 crossings and there are only two of them (see [15], Appendix I:
Summary Data page 44). These two facts proves Lemma 3.1

3.1 Proof of Theorem 1.1.

Assume for a contradiction that U
(n,ω)−→ T(2, 3)−1,2 . Since T(2, 3)−1,2 is a non-exceptional

graph knot, by Theorem 2.9, n = ±1 [14].

Case 1 Assume for a contradiction that n = −1, then T(2, 3)−1,2 bounds a disk (D, ∂D) ⊂(
CP2 − B4, ∂(CP2 − B4) ∼= S3) such that [D] = ωγ ∈ H2(CP2 − B4, S3;Z).
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Figure 12
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CP2 − B4ωγ ∈ H2(CP2 − B4, S3, Z)

CP2#CP2 − B4

D
[D]=

>¨@ ¨

;
T(2,3)

T(-2,3) 1,2

-1,2

Figure 13
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T(-2,5)

U

Figure 14
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Case 1.1. If ω is even, then Figure 12 shows that U
(−1,2)−→ T(−2, 3) (+1,4)−→ T(2, 3)−1,2

and then, U
(+1,2)−→ T(2, 3) (−1,4)−→ T(−2, 3)1,2 . Thus, there exist a properly

embedded disk (∆, ∂∆) ⊂
(
CP2#CP2 − B4, ∂(CP2#CP2 − B4) ∼= S3

)
such

that ∂∆ = T(−2, 3)1,2 and [∆] = 2γ̄ + 4γ ∈ H2(CP2#CP2 − B4, S3;Z).

Gluing D and ∆ along their boundaries, as depicted in Figure 13, would
yield an embedded sphere S ⊂ CP2#CP2#CP2 that represents the second
homology class:

[S] = ωγ + 2γ̄ + 4γ ∈ H2(CP2#CP2#CP2;Z).

Since ω is even, then by Theorem 2.2,
∣∣∣∣ω2 + 12

2 − 1
∣∣∣∣ ≤ 3; a contradiction.

Case 1.2. If ω is odd, then Figure 14 shows that U
(−1,3)−→ T(−2, 5) (−1,3)−→ T(2, 3)−1,2

and then, U
(+1,3)−→ T(2, 5) (+1,3)−→ T(−2, 3)1,2. Thus, there exist a smooth disk

(∆, ∂∆) ⊂
(
CP2#CP2 − B4, ∂(CP2#CP2 − B4) ∼= S3

)
such that ∂∆ = T(−2, 3)−1,2

and [∆] = 3γ̄2 + 3γ̄3 ∈ H2

(
CP2#CP2 − B4, ∂(CP2#CP2 − B4) ∼= S3;Z

)
.

Similarly, gluing D and ∆ along their boundaries would yield an em-
bedded sphere S ⊂ CP2#CP2#CP2 that represents the second homology
class [S] = ωγ + 3γ̄1 + 3γ̄2 ∈ H2(CP2#CP2#CP2;Z). This would contra-
dict Theorem 2.3.

Case 2. Assume for a contradiction that n = +1, then T(2, 3)−1,2 bounds a smooth disk
(D, ∂D) ⊂

(
CP2 − B4, ∂(CP2 − B4) ∼= S3

)
such that: [D] = ωγ̄ ∈ H2(CP2 − B4, S3;Z).

Case 2.1. If ω is even, then by the same argument as in Case 1.1, this yields the ex-
istence of an embedded sphere S ⊂ CP2#CP2#CP2 that represents the sec-
ond homology class [S] = [D ∪∆] = ωγ̄ + 2γ̄1 + 4γ ∈ H2(CP2#CP2#CP2;Z).

In virtue of Theorem 2.2:
∣∣∣∣−ω2 + 12

2 + 1
∣∣∣∣ ≤ 3. Thus ω = ±4. This would

contradict Theorem 2.1, since by Lemma 2.1, σ(T(2, 3)−1,2) = −2.
Case 2.2. If ω is odd, then by the same argument as in Case 1.2, this would yield the

existence of an embedded characteristic sphere S ⊂ 3CP2 that represents
the second homology class [S] = [D ∪∆] = ωγ̄ + 3γ̄2 + 3γ̄3 ∈ H2(3CP2;Z).
This would contradict Theorem 2.3.

3.2 Proof of Theorem 1.2.

Figure 15 shows that any unknotting number one knot is (−1)-twisted. Note that all
knots with less or equal than seven crossings, except 51, 71, 73, 74 and 75 , are unknot-
ting number one knots [19]; and therefore they are (−1)-twisted. In the other hand, it
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is easy to see that the (2, 5)-torus knot 51 is (+2, 2)-twisted and that the (2, 7)-torus
knot 71 is (+3, 2)-twisted as well as Figure 16 shows that 73 is (+2, 2)-twisted and 74
is (−2, 0)-twisted. Therefore, it remains to prove that 75 is a nontwisted knot.

Assume for a contradiction that U
(n,ω)−→ 75. Since 75 is a positive knot, then Proposition

2.3 implies that either (i) n > 0, or (ii) n < 0 and then ω ∈ {0,±1}. Therefore, there
are two cases to distinguish according to the sign of n and the parity of ω .

Case 1. Assume for a contradiction that n > 0. We can assume, without loss of generality,
that ω > 0. Therefore, by Remark 2.1, 75 is ω -congruent to U .

Case 1.1. If ω is even, then by Remark 2.1, n divides det(75)− 1
2 (= 8).

Case 1.1.1. If n ∈ {+2,+4,+8} then by Corollary 2.1, either ω = 0 or (n, ω) =

(+2,+2). In these cases, 75 bounds a disk (D, ∂D) ⊂ (S2 × S2 − B4, S3)
such that ∂D = 75 and [D] = −ωα1 +

nω
2 β1 ∈ H2(S2 × S2 − B4, S3;Z). Fig-

ure 6 shows that U
(−2,2)−→ T(−2, 3) (−2,2)−→ 7̄5. Therefore, there exist a prop-

erly embedded disk ∆ ⊂ S2 × S2#S2 × S2 − B4 such that ∂∆ = 7̄5 ; and

[∆] = 2α2 + 2β2 + 2α3 + 2β3 ∈ H2(S2 × S2#S2 × S2 − B4, S3;Z).

Gluing D and ∆ along their boundaries yields the existence of a charac-
teristic sphere S ⊂ 3 S2 × S2 such that:

[S] = [D ∪∆] = −ωα1 +
nω
2 β1 + 2α2 + 2β2 + 2α3 + 2β3 ∈ H2(3 S2 × S2;Z).

Theorem 2.3 yields that nω2 = 16; a contradiction.
Case 1.1.2. If n = +1 then 75 bounds a disk (D, ∂D) ⊂ (CP2 − B4, S3) such that:

[D] = ωγ̄ ∈ H2(CP2 − B4, S3;Z).

Similarly, gluing D and ∆ along their boundaries yields the existence of a
smooth sphere S ⊂ CP2#S2 × S2#S2 × S2 such that:

[S] = [D∪∆] = ωγ̄+ 2α1 + 2β1 + 2α2 + 2β2 ∈ H2(CP2#S2×S2#S2×S2;Z).

Theorem 2.2 implies that ω = ±4, which in turn contradicts Theorem 2.1.

Case 1.2. If ω is odd, then 75 bounds a smooth embedded disk (D, ∂D) ⊂ (nCP2 − B4, S3)
such that: [D] = ω(γ̄1 + ....+ γ̄n) ∈ H2(nCP2 − B4, S3;Z). Let p be the smallest
prime divisor of ω . By Lemma 2.1, σp(75) = −4. Therefore, Theorem 2.1 implies
that
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∣∣∣∣ξ2(p2 − 1)
2p2 + 4 + n

∣∣∣∣ ≤ n ⇐⇒
∣∣∣∣−n(ω

p
)2.

p2 − 1
2 + 4 + n

∣∣∣∣ ≤ n.

⇐⇒ 0 ≤ n
[(ω

d

)2
.
d2 − 1

2

]
− 4 ≤ 2n.

This implies that the only remaining cases to preclude are n ∈ {+1,+2} and
ω = 3.

(1) If n = +1 and ω = 3 then this yields the existence of a characteristic
sphere S ⊂ CP2#S2 × S2#S2 × S2 such that:

[S] = [D∪∆] = 3γ̄+ 2α1 + 2β1 + 2α2 + 2β2 ∈ H2(CP2#S2× S2#S2× S2;Z).

This would contradict Theorem 2.3.
(2) If n = +2 and ω = 3 then this yields the existence of a properly embedded

disk (D, ∂D) ⊂ (S2 × S2 − B4, S3) such that:

ξ = [D] = −3α+ 3β ∈ H2(S2 × S2 − B4, S3;Z).

This would contradict Corollary 2.1.

Case 2. If n < 0, then Proposition 2.3 yields that ω ∈ {0,±1} as 75 is a positive knot.

Case 2.1. If ω = 0 then by Remark 2.1.(2), n divides det(75)− 1
2 (= 8).

(1) If n = −1, then by Proposition 2.3, | σ(75) |
2 ≤| n |; a contradiction.

(2) If n ∈ {−2,−4,−8}, then this yields the existence of a characteristic
sphere S such that:

[S] = [D ∪∆] = 2α1 + 2β1 + 2α2 + 2β2 ∈ H2(3S2 × S2,Z);

which would contradict Theorem 2.3.
Case 2.2. If ω = 1, then this yields the existence of a characteristic sphere,

[S] = [D∪∆] = γ1+....+γ|n|+2α1+2β1+2α2+2β2 ∈ H2(| n | CP2#2S2×S2;Z).

Note that ξ2 =| n | +16 and σ(X) =| n |. By Theorem 2.4∣∣∣ξ2 − σ(X)
8

∣∣∣ ≤ m− 1;

which would contradict that m = 2.
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