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In this paper, we give two infinite families of counterexamples and finite positive
examples to a conjecture on the minimal genus problem in CP? #CP?2, proposed by
10 Lawson [10].
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16
7 1 Introduction

18

19 Let X be a smooth, closed, oriented, simply connected 4—manifold, and let b;r (X)
20 (resp. b, (X)) be the rank of the positive (resp. negative) part of the intersection form
21 of X. The minimal genus problem is concerned with finding the genus function Gx
22 defined on H,(X;Z) as follows. For « € H>(X, Z), consider

23

” Gy (o) = min{genus(X) | ¥ C X represents «, ie, [X] = a},

2 _where ¥ ranges over closed, connected, oriented surfaces smoothly embedded in the
2% 4-manifold X . Note that Gy (—a) = Gy («) and Gy () > 0 for all « € Hy(X,Z)
2"_(cf Gompf and Stipsicz [5]).

28

2 The minimal genus problem was solved for the 4—manifolds CP2, $? x S2 and
50 CP?2#CP?; see Kronheimer and Mrowka [8] and Ruberman [15]. For more results
31 of this kind, we leave details to Lawson’s expository paper [10]. The minimal genus
3 problem in the case of CP? is well known. In this paper, we treat CP? # CPP? which
33 has b;r = 2 and admits no algebraic structure since a simple characteristic class
34 argument shows that the tangent line bundle admit no complex structure (cf Gompf
35 and Stipsicz [5]); in regards of Lawson’s conjecture [10].

36

37 Conjecture 1.1 The minimal genus of (m,n) € H,(CP? # CP?) = H,(CP?) @
38 H,(CP?) is given by (m2—1) + (";1), and it is the genus realized by the connected sum
39 of the complex projective curves in each factor.
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102 M. Ait Nouh

1 Taking the connected sum of the complex projective curves in each factor represent-
2 ing respectively my; € H,>(CP?;Z) and ny, € H,(CP?;Z), where y; and y, are
s the standard generators of H,(CP? # CP?), yield a surface representing (m,1n) €
4 H,(CP2#CP?;Z). Then, for any (m,n) € H,(CP2#CP?;Z), the minimal genus
5 problem function satisfies
6

. G(C]P’Z#(C]P’Z((m’ n)) < chz(m) + chz(l’l).

& The minimal genus of (m, n) € Hy(CP*#CP?; Z) is bounded above by ("5 ') +("3").
_9 by the positive answer to Thom’s conjecture; see Kronheimer and Mrowka [7]. This
10 bound is sharp if |m| <2 and |n| <2 since each class can be represented by a sphere
11 ijn CP?#CP2. The simplest case is the class (3,2) € H,(CP?#CP?), which is still
12 unresolved. This class can be represented by an embedded torus, but it is unknown
13 whether it can be represented by an embedded sphere [10]. Surprisingly enough, even
14 if Conjecture 1.1 seems to be far from being true, there are some nontrivial positive
15 examples. Therefore, it will be interesting to rather find the complex projective curves
16 in CP2#CP? for which Lawson’s conjecture holds.

17
s InSection 2, we prove Theorem 1.1 which exhibits two infinite families of counterex-
1o amples.

%Pheorem 1.1 Conjecture 1.1 fails for the following infinite families:

2 (1) (2p.d) € Hy(CP?#CP?;Z) where d is a possible degree of T(p,4p — 1)

23 in CP2, forany p >2, and T(p,4p — 1) denotes the (p,4p — 1)—torus knot;
2 (2) (m,0) € Hy(CP2#CP?;Z) forany m > 3.

25

26 _In Section 3, we prove Proposition 1.1 that exhibits two nontrivial positive examples.
27

28 Proposition 1.1 The minimal genus of the pairs (3,3) and (6, 6) € H,(CP?#CP?)
29 are respectively 2 and 20.

30

31 Throughout this paper, we work in the smooth category. All orientable manifolds
32 will be assumed to be oriented unless otherwise stated. In particular, all knots are
33 oriented. Recall that CIP? is the closed 4—manifold obtained by the free action of
34 C*=C—{0} on C3>—{(0,0,0)} defined by A(x, y,z) = (Ax, Ay, Az) where A € C*
35 ie CP? = (C?—{(0,0,0)})/C*. An element of CP? is denoted by its homogeneous
36 coordinates [x : y : z], which are defined up to the multiplication by A € C*. The
37 fundamental class of the submanifold H = {[x : y : z] e CP? | x = 0}(H =~ CP!)
38 generates the second homology group H,(CP2; Z) (cf [5]). Since H = CP!, then the

39 standard generator of HgiQZIP’Z; 7)) is denoted, from now on, by y = CP!]. Therefore,

Algebraic €& Geometric Topology, Volume 14 (2013)
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1 the standard generator of H,(CP? — B*;Z) is CP! — B> ¢ CP? — B* with the
2 complex orientations. A class & € Hy(CP? — B*, 3(CP? — B*); Z) is identified with
3 its image by the homomorphism

:— H,(CP? — B* 3(CP? — B*);Z) =~ H,(CP? —int(B*); Z) — H,(CP?; 7).

6 Let d be an integer, then the degree d smooth slice genus of a knot K in CP? is
7_defined as

8

9 g(CIPZ (da K)

' — min{genus(X) | % = K and [Z, %] = dy € Hy(CP? — B* 3(CP? — B*): Z)},
11

12 where ¥ ranges over connected, oriented, smooth surfaces properly embedded in
13 CP2—

™ _1f such a surface exists, then we call d a possible degree of K in CP2. By the above
 _identification, we also have [Z]=dy € Hy,(CP? — B*;Z). Then the CP?—genus of

1 aknot K is defined as
17

18 gep2(K) = min{g p2(d, K) | dis a possible degree of K}.

ﬁé: similar definition could be made for any 4-manifold and that this is a generalization
*ef the 4-ball genus; see the author [13].

—Acknowledgements The author would like to thank heartily the referee for his in-
—S}ght and helpful comments and the Editor Professor Akio Kawauchi for his patience,
—throughout the accomplishment of this paper. He also wants to thank the Departments
*ef Mathematics at the University of California, Riverside and the University of Texas
*a{ El Paso for their hospitality.

28

2 2 Proof of Theorem 1.1

30

3! _Qur counterexamples to Conjecture 1.1 are based on twisting operations of knots

32 _defined as follows.
33

34 —_— —_—
35 | n—twisting n—full
36 | ” twistings
37
n
38
Figure 1
39
391/,
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10 T, p)
11

T(—p.4p—1)

- Figure 2: T(1,p) = U AauiiiN T(—p.4p—1)

13

™ Let K be a knot in the 3—sphere S3, and D? a disk intersecting K in its interior.
' Let n be an integer. A (—%)—Dehn surgery along dD? changes K into a new knot K,
® in S3. Letw = 1k(dD?, K). We say that K, is obtained from K by (1, w)—twisting
%Qer simply twisting). Then we write

(n,0)

19 K —= K,.

20
20%/2 o, We say that K, is n-twisted if K is the trivial knot (see Figure 1). An example of

5, interest is illustrated in Figure 2, where T'(p,¢q) (0 < p <q and p and g are coprime)

denotes the (p, g)—torus knot; see Burde and Zieschang [3].

Mhe 4-ball genus (resp. 3—genus) of a knot k in S3, denoted by g* (k) (resp. g(k)),
25 is the minimum number of genera of all smooth compact connected and orientable
26 surfaces bounded by k C dB* = S3 in B* (resp. S3). A knot is called positive, if it
27 has a positive diagram, ie a diagram with all crossings positive. To deny Conjecture 1.1,

28 _we need the following four lemmas.
29

30 Lemma 2.1 Let Ko be a knotin S3 with 4-ball genus g*.

(a) If K is a knot obtained by a (—1, w)—twisting from the knot K, then K bounds
a properly embedded genus g* surface in CIP? with possible degree .

(_1 ’m) (_1 an) *
34 (b) If Ky Ky K, then K bounds a properly embedded genus g

35 CP?#CP? — B* representing [Xgx]=my; +ny, € H,(CP?#CP?,53,72).

36

33

37 Proof (a) As shown in Figure 3, let D be a disk on which the (—1, w)-twisting is
38 performed. Note that the (41)—Dehn surgery on dD changes Ky to K. Regard K|

39 and D as contained in the boundary of a 4—dimensional handle h°. Then attach a

391/,
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1 2-handle 42, to 1° along 3D with framing 4 1. The resulting 4-manifold #° U h? is

2 CP?— B* (see Figure 3). Let (Egx,0Xgx) C (B*,0B* = S3) be the orientable and

3 compact surface with 0X g+ = K. Since /k(Ky, D) = w, then we can check that
4 [Zg+] = wy € Hy(CP? — B4, S%, 7).

-1

con =Bt (1)l C A UR?)
twisting ~ CP2_ B*

12

S

13

14

15 Figure 3

16

Wn) As shown in Figure 4, let D; and D, be the disks on which the (—1, m)—twisting
18 and (—1, n)—twisting are respectively performed. Note that the (+1)-Dehn surgery on
19 respectively dD; and 0D, changes Ky to K. Regard Ky, D1 and D, as contained
20 in the boundary of a 4—dimensional handle 4#°. Then attach the 2—handles h% and h%
Tzﬂong 0D, U D, with the same respective framing +1. The 4-manifold /#° U h% U h%
22 ijs CP?#CP? — B*. Let (Zg+,0%g+) C (B* 0B* = S?) be the orientable and
23 _compact surface with 0X g+ = Ko. Since /k(dDy, Ko) = m and [k(0D;, Ko) = n,
24 then [Xg+] = my; +ny, € Hy(CP?#CP? — B4, S3;7).

25

26

27 Ko | - K
28 =1 : : —D)-full|
' 0 ! isti
29 -\ CO e —1)fun wisting | < 90 uh? U h2)
30 2 | - i |twisting ~ CP?#CP?— B*
31
32 D,
33
34 Figure 4
35
36 This completes the proof. O

37

35 Lemma 2.2 T(—p,4p £ 1) for p > 2 is smoothly slice in CP? with a possible
30 degree d =2p

Algebraic €& Geometric Topology, Volume 14 (2013)
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1 Proof Figure 2 proves that 7(—p,4p —1) is obtained from the trivial knot 7'(—1, p)
2 by a single (—1,2p)—twisting. Then, the proof of Lemma 2.2 is a straightforward
3 consequence of Lemma 2.1. |
4

5 Lemma 2.3 We have gp2(T(p.q)) < % —1.

6

7 Proof Note that 7'(p,q) is obtained from 7'(2,3) by adding (p — 1)(g —1) — 2
s half-twisted bands. Since 7T'(2, 3) is (—1)-twisted (cf [13]), then T'(2, 3) is smoothly
o slice in CPP2. This implies that there is a genus ((p —1)(¢ — 1)/2) — 1 concordance
10 between T'(2,3) and T'(p, q), which proves Lemma 2.3. |
11

12 This let us hit to the following problem (cf [13]).

13

12 Problem 2.1 Show that gop2(T(p,q)) = L=2@=D 1,

15

16 We gave positive examples to this problem for a finite family of (£2, ¢)-torus knots [13].

" _To prove Lemma 2.4, recall that a knot in the 3—sphere obtained from the torus knot
% T(p.q) by performing s—times full twists on adjacent r—strands of the parallel p—
19 strings of T'(p, q) is called a twisted torus knot, denoted by T'(p. q.r,s) as depicted

29 in Figure 5 (we refer the reader to Callahan, Dean and Weeks [4] for more details).
21

>» We have

23

(1) u(K;)=u—i,0=<i=<u (in particular, K, is the trivial knot),
24

- (2) two succeeding knots of the sequence are related by one crossing change,

26 (3) u=u(K) is the unknotting number of K.

27
-g Furthermore, the set of respective crossings positions {Cy, C5, ..., Cy,—1, Cy} at which
29 these crossing changes are performed in the following order:

30 G &)
31 K0—>K1—>K2---—>Ku,

32 where u = u(K), is called a minimal U —crossing data for the knot K. An example
33 can be found in Vikas and Madeti [18] for the case of torus knots (see Figure 6 in the
34 case of a (5, 4)-torus knot).

35

36 Lemma 2.4 Let K be a knot such that u(K) = g*(K), then g*(K;) < g*(K)—1.

37
38 Proof By the unknotting inequality we have g*(K{) <u(K;). Since g*(K) =u(K),
39 and by the above construction u(Ky) = u(K) —1, then g*(K;) < g*(K)—1. O

Algebraic €& Geometric Topology, Volume 14 (2013)
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22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

7 strands

s full twists I

k P, q)—torus knot bra1d|

o)

T(p.q.1.5)

Figure 5: Twisted torus knot T'(p, ¢, r, s)

Ci _Cs_GCs
N W

¢, “,QV o\~
A‘ N\ \

Figure 6: Minimal U —crossing data for 7°(5, 4)

37 Remark 2.1 It is well-known that if K is a positive knot, then u(K) = g*(K) (See
38 Nakamura [12], Shibuya [16] and Przytycki [14] for proofs). Also, Baader classified

knots for which thi lity hol f[1

Algebraic €& Geometric Topology, Volume 14 (2013)
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11/2

2

3

4

5

6

. T(p.4p—1)

8

9

10 T(—p.4p—1)

11

12

13

14

15

16

17

18 Figure 7: Gluing of surfaces technique
19

201/zﬁmof of Theorem 1.1 By Lemma 2.2, T(—p,4p —1) for p > 2 is smoothly slice

21 in CPP? with degree d = 2p. Then, there is a smooth disk (A, dA) C (CP? — B*, S3)
22 such that A = T'(—p,4p—1) and [A] =2py in Hy(CP?—B*, S3:Z). In the other
23 hand, there is a surface (Xg, 02g) C (CP?2— B*, S3) such that 0Xg =T (—p.4p—1)
2 and [E4] = dy € Hy(CP? — B* %, Z), where g = gcp2(T(p.4p —1)). Let y;
25 and y, be the standard generators of H, (CP?#CP?;Z). Then, the genus g closed
26 surface ¥ = AU X, in CP2#CP? satisfies £] =2py; +dy, in Hy(CP2#CP?2; Z)
27 (see Figure 7). If Conjecture 1.1 were true, then the genus of £ which is equal to
2 gep2(T(p,4p—1)) would satisfy

- Cp—1)(2p-2) (|d|-1)(d|-2)

30 3 + 5 = gcp2(T(p,4p—1)).
31
5, By Lemma 2.3, we have
33 Cp=DCp=2)  (dl=D(d[=2) _(p=DG@r=2)
34 2 2 - 2 '
* or equivalently,
36

(d|-D(d]-2)
’ Qp-Dp-D+ 3 =(p-DCp-D-1,

38

39 and it contradicts the positivity of ((Jd|—=1)(|d|—=2))/2>0ford € Z. O

391/,
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1 To prove that Conjecture 1.1 fails for (m,0) € H,(CP2#CP?;Z) for any m > 3, we
2 have two cases.

3
, Casel: m=2n+1for n>1 The proof of this case is based on Figure 8 showing
that

o

(o))

—1,2n+1 —1,0
S @1 S rCan—1),2m 41,2, -1) S T —@n—1), 20+ 1),

~

©

_° By the positive answer to Milnor’s conjecture (cf Kronheimer and Mrowka [7]), the
_° 4-ball genus of T(2,2n — 1) and T(2n — 1,2n + 1) are respectively n — 1 and
19 2n(n—1). As depicted in Figure 9, Lemma 2.1 yields the existence of a compact
1 surface (X,_1,0%,_1) C (B* dB* = §3) with 0%,_; = T(—Q2n—1),2n+1). As
12 depicted in Figure 9, Lemma 2.1, we have

13
14 [Z,—1]= @n + 1)y, € Hy(CP?#CP? — B*, 53: 7).

15
Lo Letnow (X2,(—1), 0Z2n(n—1)) C (B*,0B* =~ S3) be a compact surface with

17

822,,(,,_1) = T(Zi’l — 1, 2n + 1)

18

19 Gluing X, _; and X;,(,—1) along their boundaries yield a closed surface

20
o Y =31 UZypm1) C CP?#CP?

22
;representing (2n + 1)y, € Hy(CP?#CP?). If Conjecture 1.1 were true, then the
S, genus of ¥ which is equal to n — 1 4+ 2n(n — 1) would satisty

25 (2n—|—1—1)(2n+1—2)<

26 2 -
27

n—142nn-1),

or equivalently, 2n2 —n < 2n% —n — 1, an obvious contradiction.

28

?° Case2: m =2p for p>2 Figure 2 shows that T(—p,4p — 1) is obtained from
3% _the trivial knot T'(—1, p) by a single (—1,2p)—twisting. Let {C;,C,,...,Cu_1,Cy}
3! be a U—crossing data for T(—p,4p — 1). Changing the crossing C; from negative
32_to positive is equivalent to performing a (—1, 0)—twisting along the crossing C; (see
3 Figure 10) and this yields that

34

35

T(-1,p)——T(—p,4p—1)—— T(—p,4p—1,2,+1),

36

37 where T(—p,4p —1,2,41) is a twisted torus knot, as shown in Figure 10. By
38 Lemma 2.4, we have that the 4-ball genus of 7 (—p,4p — 1,2, +1) satisfies the
39 inequality g* < ((p—=1)(4p—2))/2—1. Therefore, by a similar argument as in Case 1

Algebraic €& Geometric Topology, Volume 14 (2013)
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1 above, if Conjecture 1.1 were true for (2p,0) € H,(CP2#CP?2;Z) for any p > 2,

2 then we would have ((2p —1)(2p —2))/2 < g*, which yields that
: @p-DCp=2) _(p-D@p-2)
2 - 2 '

5
o or equivalently, 2p —1)(p—1) < (p—1)(2p — 1) — 1, an obvious contradiction.

;—Gorollary 2.1 The class (3,0) € Hy(CP?#CP?) can be represented by a sphere, and
?therefore, it is the smallest counterexample to Conjecture 1.1.

%Proof It follows immediately from Case 1 if n = 1. |

12

13

14

15

(-1)—full twisting

2n — 1)-strand
21

22

23
24 T(2,2n—1)

25

26
27
28

29

T(—2n—1),2n+1,2,-1)

(=1, 0)—twisting

30

31

—1)—full twisting

32

33

34

35 T(-2n—-1),2n+1)

36

37 ) (=1,2n+1) (=1,0)
38 Figure 8: T(2,2n — 1) ——— T(-2n — 1),2n + 1,2,-1) ——

T(—Q2n—1),2n+1)

Algebraic €& Geometric Topology, Volume 14 (2013)
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>,—1 C CP*#CP?— B*
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Zonm—1) C B

11

12

13

14

15 Figure 9: Gluing of surfaces technique

16

17

18 ﬂ

19

20

21 %
N

22

A 4

0

/.<_

NN
N
A 4
<

25 +1

7 Figure 10

» 3 Proof of Proposition 1.1

32 To prove Proposition 1.1, we need Lemma 3.1, Theorem 3.1 and Lemma 3.2 as well as
33 Lemma 3.3. For this purpose, we recall some basic definitions. In what follows, let X
34 be a smooth, closed, oriented, simply connected 4—manifold, then the second homology
35 group Hy(X,Z) is finitely generated (we leave details to Spanier’s book [17]). The
36 ordinary form gy: Hy(X,Z) x Hy(X,Z) —> 7Z given by the intersection pairing for
37 2—cycles such that gx (a, ) = « - B, is a symmetric, unimodular bilinear form. The
38 signature of this form, denoted o (X), is the difference between the number of positive

39 and n ive eigenval f a matrix representin L X)) (X

Algebraic € Geometric Topology, Volume 14 (2013)
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1 the rank of the positive (resp. negative) part of the intersection form of X . The second
2 Betti number b, = b; + b5 and the signature is o (X) = b;r —b; .

3
~, A second homology class § € H, (X, Z) is said to be characteristic provided that & is
. dual to the second Stiefel-Whitney class w, (X ), or equivalently

L E-x=x-x (mod?2)

.
s forany x € H,(X;Z) (we leave details to Milnor and Stasheff’s book [11]).
9

10 Lemma 3.1 (a,b) € Hy(CP2#CP?;Z) is characteristic if and only if a and b are
1 both odd.

12

il'-lroof If (a,b) € Hy(CP2#CP?; Z) is characteristic, then (a, b)-(1,0) =1 (mod 2)
‘and (a,b)-(0,1) =1 (mod 2). This yields that both ¢ and b are odd. Conversely,
—let £ = (a,b) € Hy(CP?*#CP?;Z) and assume that ¢ and b are both odd. Then for
‘any x =(x1,x2) € Hy ((CIPZ#(CIP>2 7)), the identity (1) is equivalent to ax| + bx, =
Hel +x2 (mod 2). Since x; —x (mod?2) fori =1,2anda=1 and b =1 (mod 2),
—then (1) holds. This proves Lemma 3.1. O

4Theorem 3.1 (Bryan [2]) Let X be a smooth closed oriented and simply connected
‘éf manifold. We suppose ¥ is an embedded surface in X of genus g and [X] is
*cﬁvmble by 2. We assume that —E is characteristic, bJr > 1, and == E 2 _g(X)>0.
4Then

24

5(X-%
25 g>4(T—0(X))—|—2—b2(X).
26

27
g A proof of the following lemma can be found in [10, page 401].

29

30 Lemma 3.2 (Kronheimer and Mrowka [9]) Let X be a smooth closed, connected and
31 oriented 4—manifold. Let a(X) = 2g(X)—2—X-X. If £ € Hy(X;Z) is a homology
32 class with £ -£ > 0 and ¢ is a surface representing £ and g > 1 when Z¢ - g =0,
33 then for any r > 0, the class r& can be represented by an embedded surface ¥, g with

- a(Z,g) = ra(Zg).

35

36
57 Remark 3.1 Note that in particular, if X = CP?#CP?, then a(Xyg) = 2a(Xg) is
3s equivalent to

g(zzg) =2g(25)+25-25— 1.

Algebraic €& Geometric Topology, Volume 14 (2013)
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1 Proof The computation

3 a(ZZE) = 261(2&:) — 2g(225) —2— Y- Ype = 22g—2— g Eg)

4 = 2g(Xe) —2—4%g - X =2(2g —2—Z¢- Z¢)

5 <:>g(22§) =2g(2§)+25~25—1

6

~completes the proof. a

8
o Recall that the knot obtained from & by inverting the orientation is called the inverted

10 knot and denoted —k . The mirror image of k or mirrored knot is denoted by k™ it is
1, obtained by a reflection of &k in a plane [3, page 15]. In what follows, we let k = —k*
1» denote the inverse of the mirror image of k.

” Lemma 3.3 (1) The 4-ball genus of positive knots in S* is additive under the
1 connected sums.

15

s (2) Foranyknotk in S3, g*(k) = g*(k).

17

15 Proof Itis well-known that g* (k) = g (k) for any positive knot [12]. Since the 3-ball
10 genus of knots is additive under connected sum [3], and g(k) = g (k) then the proofs
20 of the statements in Lemma 3.3 are easily proven. |

21
22 Proof of Proposition 1.1 To prove Proposition 1.1 for (3,3) € H,(CP?#CP?2;7),
23 let X be a genus g surface such that [S] = 3y, + 3y, € Hy(CP2#CP?). Theorem 3.1
24 yields that g > 2. Indeed, Lemma 3.1 implies that £ = [Z] € Hy(CP?#CP?) is a
25 characteristic class with ©-X = 18. In virtue of Lemma 3.2, the class 26 =6y,+6y, €
26 H,(CP?#CP?) can be represented by an embedded surface 2,¢ satisfying the identity
27 a(Tyg) = 2a(X). Since Xpg - Xpg =43 - X, then the estimate in Theorem 3.1,

& 5 (T Toe

jz g(Zag) = Z(T —
31 is equivalent by Remark 2.1 to

32

O(X)) +2-by(X),

26+ 17> 3(2- 2~ (X)) +2-by(X),

33

3 where X = CP2#CP?2. This implies that g > 2.
35
36 To prove that g < 2, it is enough to exhibit a smooth closed genus two surface

37 22 C CP2#CP? representing 3y; + 3y, € Ho(CP2#CP?). Indeed, Figure 11 shows
5 (hat

(_1:3)
T4,2)——T(=2,3)
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1 and therefore,

2

3 T,2)#T(1, 2) T(l D#T (-2, 3) T( 2,3)#T(-2,3).
4

5

6

7

8

9

10 —>

11

12

NS e
1 T(1,2) -1

15 T(-2,3)

o . (-=1,3)

17 Figure 11: T(1,2) ——> T'(-2,3)

18

¥ By Lemma2.1, there is a disk A C CP2#CP2— B4 so that dA = T(=2,3)#T(=2,3)

201/, % and [A]=3y; +3y, € Hy(CP?*#CP?—B*, 53, 7). Since the 4-ball genus of 7(2, 3)
2

39
391/,

I—Ls one and T'(2, 3) is a positive knot (see Kawauchi [6]), then Lemma 3.3 yields that
—the 4—ball genus of k = T'(2,3)#T(2,3) is two. Let (2,,9%,) C (B* 0B* =~ S$?)
* e an orientable and compact surface with 3%, = T'(2,3)#7(2, 3). Gluing A and X,
24*along their boundaries yield a closed genus 2 surface ¥ = AU X, C CP? # CP?
EZ—representing 3y; + 3y, € Hy(CP? #CP?) (see Figure 12).

27

28

29

30 A C CP2#CP2— B*

31

32

33

34

35

36

37

38

Figure 12: Gluing of surfaces technique
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IN

o

(o))

~

©

T(1,p)#T(1,q)

©

10 1,2g)

—1,2 —
Figure 13: T (1, p) # T(1,q) (——pL T(—p,dp — 1) #T(,q) (————>
T(=p.4p—D#T(—q.49—1)

11

12

13
12 To prove Proposition 1.1 for the pair (6, 6) € H,(CP?#CP?; Z), we first notice that if
15 1(p,q) denotes the (p, g)—torus knot for 0 < p < g with p and ¢ are coprime, then

16 the knot drawn in Figure 13 is ambient isotopic to the trivial knot T'(1, p)#7'(1, q),
17 Henceforth,

18
9 T p#T(Lg) 225 T(-p.dp— D #T(1g)

2 (—1,29)

21 ——> T(=p.4p—-D#T(=q,4q - 1).
22

53 By Lemma 2.1, there exists a properly embedded disk A C C P2 #CP2— B* such that
s OA=T(—=p,4p—1)#T(—q,4q—1) and [A] =2py; + 2qy,, where y; and y, are
- the standard generators of H; (CP?#CP? — B*, §3:7). By the positive answer to
56 Milnor’s conjecture by Kronheimer and Mrowka [7] and Lemma 3.3(1), the 4-ball
5, genusof T'(p,4p—1)#T(q.4q—1)is (p—1)2p—1)+(g—1)(2g —1). Let Xg=
- be an oriented and compact surface properly embedded in B* and such that

29

0 g« =T (p,4p—1)#T(q,4q —1),

30
31 _and whose genusis g* = (p—1)2p—1)+(¢—1)(2¢g—1). Denote £, 24 = AUXg*,
32 _then it is easily checked that [X5, 24] = 2py1 + 2qy2 € Hy(CP? #CP?,Z) and the
3 genusof Ey,04 is (p—1)Q2p—1)+(¢g—1(2q—1).

34

35 Assume now that (2p,2q) = (6, 6), or equivalently (p,q) = (3, 3). By Theorem 3.1,
36 the genus of (6,6) € H,(CP2#CP?2;Z) can be shown to be greater or equal to twenty.
37 Indeed, %E = 3y + 3y, is characteristic (cf Lemma 3.1), b;r (X)=b(X)(=2), and
8 (X-3)/4—0(X) = 16, where [Z] = 6y, + 6y2 € Hy(X;Z) and X = CP2#CP2.

39 By virtue of Theorem 3.1, the inequality g > %!(E-E)Z“-—Q(X)) +2—b5(X) holds.
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1 This is equivalent to g > 20. Therefore, it is sufficient to find a genus twenty surface
2 representing (6, 6) € Ho(CP?#CP?;Z), which is X6,6 as constructed above. |
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