

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstrained Optimization

Constrained Optimizatio

Overview of Matlab Optimization Toolboxes

Natasha Sharma

CPS 5195 Seminar, October 28 2014

Overview of Matlab Optimization Toolboxes

> Natash: Sharma

Unconstraine Optimization

- How to boil an egg in a microwave by optimally supplying heat? (Cast as an optimal control problem).
- Use of Symbolic Toolbox in Matlab to avoid human error in tedious calculations.
- Some examples
- ...ran out of time!

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstraine Optimization

- How to boil an egg in a microwave by optimally supplying heat? (Cast as an optimal control problem).
- Use of Symbolic Toolbox in Matlab to avoid human error in tedious calculations.
- Some examples
- ...ran out of time!

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstraine Optimization

- How to boil an egg in a microwave by optimally supplying heat? (Cast as an optimal control problem).
- Use of Symbolic Toolbox in Matlab to avoid human error in tedious calculations.
- Some examples
- ...ran out of time!

Overview of Matlab Optimization Toolboxes

> Natash: Sharma

Unconstraine Optimization

- How to boil an egg in a microwave by optimally supplying heat? (Cast as an optimal control problem).
- Use of Symbolic Toolbox in Matlab to avoid human error in tedious calculations.
- Some examples
- ...ran out of time!

Overview of Matlab Optimization Toolboxes

> Natash: Sharma

Unconstraine Optimization

- How to boil an egg in a microwave by optimally supplying heat? (Cast as an optimal control problem).
- Use of Symbolic Toolbox in Matlab to avoid human error in tedious calculations.
- Some examples
- ...ran out of time!

Motivation for today's talk

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstraine Optimization

- Finish what we started...(Practical session on Matlab optimization toolbox)
- Since the first and second derivative test fails for transcendental functions, we need to come up with better way to find x^* satisfying $\nabla f(x^*) = 0$.
- We present a constrained and unconstrained minimization problem and list the steps to be followed to solve them using the toolbox.

Motivation for today's talk

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Optimization

- Finish what we started...(Practical session on Matlab optimization toolbox)
- Since the first and second derivative test fails for transcendental functions, we need to come up with better way to find x^* satisfying $\nabla f(x^*) = 0$.
- We present a constrained and unconstrained minimization problem and list the steps to be followed to solve them using the toolbox.

Motivation for today's talk

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Optimization

- Finish what we started...(Practical session on Matlab optimization toolbox)
- Since the first and second derivative test fails for transcendental functions, we need to come up with better way to find x^* satisfying $\nabla f(x^*) = 0$.
- We present a constrained and unconstrained minimization problem and list the steps to be followed to solve them using the toolbox.

Unconstrained minimization

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstrained Optimization

Constrained Optimization Consider the objective function f(x, y) to be :

min
$$f(x,y) = x \exp(-x^2 - y^2) + (x^2 + y^2)/20$$

With the help of Matlab, we can plot the function to get an idea of where its minimizer lies!

This can be done with the use of ezsurfc(.,.) function.

Minimizing an unconstrained function f

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstrained Optimization

Constrained Optimization

fminunc

Algorithm: Quasi-Newton

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstrained Optimization

Constrained Optimization Before knowing what a quasi-Newton method is, we should understand what a Newton's method is. The Newton's method for finding the zeros of a function g and is given by:

$$x_{n+1} = x_n - g'(x_n)^{-1}g(x_n)$$

For our two dimensional problem, we want to find x^* for which $\nabla f(x^*) = 0$ holds.

Thus,
$$g(x_n) = \nabla f$$
 and $g'(x_n) = \nabla^2 f$

The quasi-Newton algorithm is employed when we cannot compute the Hessian $\nabla^2 f$ and only consider an approximation of it.

Minimizing f with constraints

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstraine Optimization

Constrained Optimization

Consider the objective function f(x, y) to be :

min
$$f(x,y) = x \exp(-x^2 - y^2) + (x^2 + y^2)/20$$

subject to the constraint:

$$xy/2 + (x+2)^2 + (y-2)^2/2 \le 2$$

The constraint above can be written as

$$g(x,y) = xy/2 + (x+2)^2 + (y-2)^2/2 - 2$$

Minimizing f with constraints

Overview of Matlab Optimization Toolboxes

Natasha Sharma

Unconstrained Optimization

Constrained Optimization

fmincon

```
f = Q(x,y) \times *exp(-x.^2-y.^2) + (x.^2+y.^2)/20
g = 0(x,y) x.*y/2+(x+2).^2+(y-2).^2/2-2;
ezplot(g, [-6, 0, -1, 7])
hold on:
ezcontour (f, [-6, 0, -1, 7])
plot(-.9727,.4685,'ro');
legend('constraint', 'fcontours', 'minimum');
hold off;
options = optimoptions('fmincon', ...
'Algorithm', 'interior-point',...
'Display', 'iter');
```


Minimizing f with constraints (continued)

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstraine Optimization

Constrained Optimization

fmincon

```
options = optimoptions('fmincon',...
'Algorithm','interior-point',...
'Display','iter');
gfun = @(x) deal(g(x(1),x(2)),[]);
[x,fval,exitflag,output] = ...
fmincon(fun,x0,[],[],[],[],[],[]...,
gfun,options);
```


Interior Point Method

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstraine Optimization

Constrained Optimization

Solve minimize f(x) subject to

$$c_i(x) \geq 0 \quad i = 1, 2, ...m.$$
 (*)

■ Barrier Function $B(x, \mu)$

$$B(x,\mu) = f(x) - \mu \sum_{i=1}^{m} \ln(c_i(x))$$

• Minimizer of (*) is equivalent to the minimizer of $B(x, \mu)$ as $\mu \to 0$.

Interior Point Method (continued)

Overview of Matlab Optimization Toolboxes

> Natasha Sharma

Unconstrained Optimization

Constrained Optimization

- Introduce the Lagrange multiplier $\lambda \in \mathbb{R}^m$ and complementarity condition λ_i $c_i = \mu, \quad i = 1, 2, ..., m$.
- In view of the Lagrange multiplier λ_i and the definition of B(.,.) we have

$$\nabla B = \nabla f - (\sum_{i=1}^{m} \lambda_i \partial_j c_i)_{j=1}^{m}.$$

■ Thus, our task is to find the minimizer of B(.,.) via a Newton or quasi-Newton method.