Name: _____

1. Consider the following linear system:

$$x - \frac{800}{801}y = 10$$
$$-x + y = 50$$

Assume that $800/801 \approx 0.998751560549313$

(a) Verify that the exact solution is $\mathbf{x}^* = [48010, 48060]^T$.

(b) Obtain the solution by a direct inversion of the coefficient matrix and assuming that we are using a computer with four significant digits, compare it with the exact solution \mathbf{x}^* .

(c) Compare the solution to one obtained on a computer with three digits of significance. Remark on how large the error is for both these cases.

2. Solve the following linear system:

$$x + y = 2$$
$$x + 1.0001y = 2 + \alpha.$$

Here the number α assumes the following three values: 0, 10^{-3} and 10^{-4} . Can you explain the significant difference in the solutions?

Solution:

```
\begin{array}{lll} \alpha=0; & x=2; & y=0. \\ \alpha=10^{-3}; & x=0.99999999996362; & y=1.00000000003638, \\ \alpha=10^{-4}; & x=1.89999999997817; & y=0.10000000002183. \end{array}
```